Journal article 799 views 106 downloads
Enhancing PV Self-Consumption Within an Energy Community Using MILP-Based P2P Trading
IEEE Access, Volume: 10, Pages: 93760 - 93772
Swansea University Authors: Meghdad Fazeli , Mohammad Monfared , Ashraf Fahmy Abdo , Justin Searle , Richard Lewis
-
PDF | Version of Record
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License
Download (1.3MB)
DOI (Published version): 10.1109/access.2022.3202649
Abstract
The high penetration of Distributed Energy Resources (DERs) into the demand side has led to an increase in the number of consumers becoming prosumers. Recently, Peer-to-Peer (P2P) energy trading has gained increased popularity as it is considered an effective approach for managing DERs and offering...
Published in: | IEEE Access |
---|---|
ISSN: | 2169-3536 2169-3536 |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa60988 |
Abstract: |
The high penetration of Distributed Energy Resources (DERs) into the demand side has led to an increase in the number of consumers becoming prosumers. Recently, Peer-to-Peer (P2P) energy trading has gained increased popularity as it is considered an effective approach for managing DERs and offering local market solutions. This paper presents a P2P Energy Management System (EMS) that aims to reduce the absolute net energy exchange with the utility by exploiting two days-ahead energy forecast and allowing the exchange of the surplus energy among prosumers. Mixed-Integer Linear Programming (MILP) is used to schedule the day-ahead household battery energy exchange with the utility and other prosumers. The proposed system is tested using the measured data for a community of six houses located in London, UK. The proposed P2P EMS enhanced the energy independency of the community by reducing the exchanged energy with the utility. The results show that the proposed P2P EMS reduced the household operating costs by up to 18.8% when it is operated as part of the community over four months compared to operating individually. In addition, it reduced the community’s total absolute net energy exchange with the utility by nearly 25.4% compared to a previous state-of-the-art energy management method. |
---|---|
College: |
Faculty of Science and Engineering |
Funders: |
This work was supported by Qatar National Research Fund (a member of Qatar Foundation) through QRLP10-G-19022034 grant. |
Start Page: |
93760 |
End Page: |
93772 |