No Cover Image

Journal article 699 views 123 downloads

MILP Optimized Management of Domestic PV-Battery Using Two Days-Ahead Forecasts

Ameena Sorour Orcid Logo, Meghdad Fazeli Orcid Logo, Mohammad Monfared Orcid Logo, Ashraf Fahmy Abdo Orcid Logo, Justin Searle Orcid Logo, Richard Lewis

IEEE Access, Volume: 10, Pages: 29357 - 29366

Swansea University Authors: Meghdad Fazeli Orcid Logo, Mohammad Monfared Orcid Logo, Ashraf Fahmy Abdo Orcid Logo, Justin Searle Orcid Logo, Richard Lewis

  • 59598.pdf

    PDF | Version of Record

    This work is licensed under a Creative Commons Attribution 4.0 License

    Download (5.31MB)

Abstract

This paper proposes an Energy Management System (EMS) for domestic PV-battery applications with the aim of reducing the absolute net energy exchange with the utility grid by utilizing the two days-ahead energy forecasts in the optimization process. A Mixed-Integer Linear Programming (MILP) exploits...

Full description

Published in: IEEE Access
ISSN: 2169-3536 2169-3536
Published: Institute of Electrical and Electronics Engineers (IEEE) 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59598
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: This paper proposes an Energy Management System (EMS) for domestic PV-battery applications with the aim of reducing the absolute net energy exchange with the utility grid by utilizing the two days-ahead energy forecasts in the optimization process. A Mixed-Integer Linear Programming (MILP) exploits two days-ahead energy demand and PV generation forecasts to schedule the day-ahead battery energy exchange with both the utility grid and the PV generator. The proposed scheme is tested using the real data of the Active Office Building (AOB) located in Swansea University, UK. Performance comparisons with state-of-the-art and the commercial EMS currently running at the AOB reveal that the proposed EMS increases the self-consumption of PV energy and at the same time reduces the total energy cost. The absolute net energy exchange with the grid and the total operating costs are reduced by 121% and 54% compared to the state-of-the-art and 194% and 8% when compared to the commercial EMS over a six-month period. Furthermore, the results show that the pro-posed method can reduce the energy bill by up to 46%for the same period compared to the state-of-the-art. The paper also investigates the effect of using different objective functions on the performance of the EMS and shows that the proposed EMS operate more efficiently when it is compared with another cost function that directly promotes reducing the absolute net energy exchange.
College: Faculty of Science and Engineering
Funders: This study was made possible by Qatar National Research Fund (a member of Qatar Foundation) through QRLP10-G-19022034 grant. This work is also supported by SPECIFIC-IKC, which is funded in part by the Engineering and Physical Science Research Council under Grant EP/N020863/1, in part by the Innovate UK under Grant 920036, and in part by the European Regional Development Fund under Grant c80892 through the Welsh Government.
Start Page: 29357
End Page: 29366