Journal article 480 views
Argus: Interactive a priori Power Analysis
IEEE Transactions on Visualization and Computer Graphics, Volume: 27, Issue: 2, Pages: 432 - 442
Swansea University Author:
Chat Wacharamanotham
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1109/tvcg.2020.3028894
Abstract
A key challenge HCI researchers face when designing a controlled experiment is choosing the appropriate number of participants, or sample size. A priori power analysis examines the relationships among multiple parameters, including the complexity associated with human participants, e.g., order and f...
Published in: | IEEE Transactions on Visualization and Computer Graphics |
---|---|
ISSN: | 1077-2626 1941-0506 |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa60608 |
first_indexed |
2022-08-15T13:49:17Z |
---|---|
last_indexed |
2023-01-13T19:20:51Z |
id |
cronfa60608 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-10-31T15:03:33.4130995</datestamp><bib-version>v2</bib-version><id>60608</id><entry>2022-07-22</entry><title>Argus: Interactive a priori Power Analysis</title><swanseaauthors><author><sid>5310be7eb485ebc96c9671f5a45d6f62</sid><ORCID>0000-0003-4831-2516</ORCID><firstname>Chat</firstname><surname>Wacharamanotham</surname><name>Chat Wacharamanotham</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-07-22</date><deptcode>MACS</deptcode><abstract>A key challenge HCI researchers face when designing a controlled experiment is choosing the appropriate number of participants, or sample size. A priori power analysis examines the relationships among multiple parameters, including the complexity associated with human participants, e.g., order and fatigue effects, to calculate the statistical power of a given experiment design. We created Argus, a tool that supports interactive exploration of statistical power: Researchers specify experiment design scenarios with varying confounds and effect sizes. Argus then simulates data and visualizes statistical power across these scenarios, which lets researchers interactively weigh various trade-offs and make informed decisions about sample size. We describe the design and implementation of Argus, a usage scenario designing a visualization experiment, and a think-aloud study.</abstract><type>Journal Article</type><journal>IEEE Transactions on Visualization and Computer Graphics</journal><volume>27</volume><journalNumber>2</journalNumber><paginationStart>432</paginationStart><paginationEnd>442</paginationEnd><publisher>Institute of Electrical and Electronics Engineers (IEEE)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1077-2626</issnPrint><issnElectronic>1941-0506</issnElectronic><keywords>Experiment design, power analysis, simulation</keywords><publishedDay>1</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-02-01</publishedDate><doi>10.1109/tvcg.2020.3028894</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-10-31T15:03:33.4130995</lastEdited><Created>2022-07-22T22:21:36.1062196</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Xiaoyi</firstname><surname>Wang</surname><order>1</order></author><author><firstname>Alexander</firstname><surname>Eiselmayer</surname><order>2</order></author><author><firstname>Wendy E.</firstname><surname>Mackay</surname><order>3</order></author><author><firstname>Kasper</firstname><surname>Hornbaek</surname><order>4</order></author><author><firstname>Chat</firstname><surname>Wacharamanotham</surname><orcid>0000-0003-4831-2516</orcid><order>5</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2022-10-31T15:03:33.4130995 v2 60608 2022-07-22 Argus: Interactive a priori Power Analysis 5310be7eb485ebc96c9671f5a45d6f62 0000-0003-4831-2516 Chat Wacharamanotham Chat Wacharamanotham true false 2022-07-22 MACS A key challenge HCI researchers face when designing a controlled experiment is choosing the appropriate number of participants, or sample size. A priori power analysis examines the relationships among multiple parameters, including the complexity associated with human participants, e.g., order and fatigue effects, to calculate the statistical power of a given experiment design. We created Argus, a tool that supports interactive exploration of statistical power: Researchers specify experiment design scenarios with varying confounds and effect sizes. Argus then simulates data and visualizes statistical power across these scenarios, which lets researchers interactively weigh various trade-offs and make informed decisions about sample size. We describe the design and implementation of Argus, a usage scenario designing a visualization experiment, and a think-aloud study. Journal Article IEEE Transactions on Visualization and Computer Graphics 27 2 432 442 Institute of Electrical and Electronics Engineers (IEEE) 1077-2626 1941-0506 Experiment design, power analysis, simulation 1 2 2021 2021-02-01 10.1109/tvcg.2020.3028894 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2022-10-31T15:03:33.4130995 2022-07-22T22:21:36.1062196 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Xiaoyi Wang 1 Alexander Eiselmayer 2 Wendy E. Mackay 3 Kasper Hornbaek 4 Chat Wacharamanotham 0000-0003-4831-2516 5 |
title |
Argus: Interactive a priori Power Analysis |
spellingShingle |
Argus: Interactive a priori Power Analysis Chat Wacharamanotham |
title_short |
Argus: Interactive a priori Power Analysis |
title_full |
Argus: Interactive a priori Power Analysis |
title_fullStr |
Argus: Interactive a priori Power Analysis |
title_full_unstemmed |
Argus: Interactive a priori Power Analysis |
title_sort |
Argus: Interactive a priori Power Analysis |
author_id_str_mv |
5310be7eb485ebc96c9671f5a45d6f62 |
author_id_fullname_str_mv |
5310be7eb485ebc96c9671f5a45d6f62_***_Chat Wacharamanotham |
author |
Chat Wacharamanotham |
author2 |
Xiaoyi Wang Alexander Eiselmayer Wendy E. Mackay Kasper Hornbaek Chat Wacharamanotham |
format |
Journal article |
container_title |
IEEE Transactions on Visualization and Computer Graphics |
container_volume |
27 |
container_issue |
2 |
container_start_page |
432 |
publishDate |
2021 |
institution |
Swansea University |
issn |
1077-2626 1941-0506 |
doi_str_mv |
10.1109/tvcg.2020.3028894 |
publisher |
Institute of Electrical and Electronics Engineers (IEEE) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
0 |
active_str |
0 |
description |
A key challenge HCI researchers face when designing a controlled experiment is choosing the appropriate number of participants, or sample size. A priori power analysis examines the relationships among multiple parameters, including the complexity associated with human participants, e.g., order and fatigue effects, to calculate the statistical power of a given experiment design. We created Argus, a tool that supports interactive exploration of statistical power: Researchers specify experiment design scenarios with varying confounds and effect sizes. Argus then simulates data and visualizes statistical power across these scenarios, which lets researchers interactively weigh various trade-offs and make informed decisions about sample size. We describe the design and implementation of Argus, a usage scenario designing a visualization experiment, and a think-aloud study. |
published_date |
2021-02-01T09:18:54Z |
_version_ |
1830271303476576256 |
score |
11.06032 |