No Cover Image

Journal article 85 views 39 downloads

A control framework to optimize public health policies in the course of the COVID-19 pandemic

Igor M. L. Pataro, Juliane F. Oliveira, Marcelo M. Morato, Alan Amad Orcid Logo, Pablo I. P. Ramos, Felipe A. C. Pereira, Mateus S. Silva, Daniel C. P. Jorge, Roberto F. S. Andrade, Mauricio L. Barreto, Marcus Americano da Costa

Scientific Reports, Volume: 11, Issue: 1

Swansea University Author: Alan Amad Orcid Logo

  • 60391.VOR.pdf

    PDF | Version of Record

    This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

    Download (2.11MB)

Abstract

The SARS-CoV-2 pandemic triggered substantial economic and social disruptions. Mitigation policies varied across countries based on resources, political conditions, and human behavior. In the absence of widespread vaccination able to induce herd immunity, strategies to coexist with the virus while m...

Full description

Published in: Scientific Reports
ISSN: 2045-2322
Published: Springer Science and Business Media LLC 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa60391
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: The SARS-CoV-2 pandemic triggered substantial economic and social disruptions. Mitigation policies varied across countries based on resources, political conditions, and human behavior. In the absence of widespread vaccination able to induce herd immunity, strategies to coexist with the virus while minimizing risks of surges are paramount, which should work in parallel with reopening societies. To support these strategies, we present a predictive control system coupled with a nonlinear model able to optimize the level of policies to stop epidemic growth. We applied this system to study the unfolding of COVID-19 in Bahia, Brazil, also assessing the effects of varying population compliance. We show the importance of finely tuning the levels of enforced measures to achieve SARS-CoV-2 containment, with periodic interventions emerging as an optimal control strategy in the long-term.
College: Faculty of Science and Engineering
Funders: I.M.L.P. was supported by CNPq (process number 201143/2019-4). J.F.O was supported by the Center of Data and Knowledge Integration for Health (CIDACS) through the Zika Platform—a long-term surveillance platform for Zika virus and microcephaly (Unified Health System (SUS), Brazilian Ministry of Health. CIDACS is recipient of a Biomedical Resource Grant from Wellcome Trust, UK). A.A.S.A. gratefully acknowledges the financial support received from the Engineering and Physical Sciences Research Council (EPSRC) in the form of grant EP/R002134/1. R.F.S.A. was supported by the National Institute of Science and Technology—Complex Systems from CNPq, Brazil. M.S.S. was supported by CNPq (process number 117790/2020-6). D.C.J. acknowledges a Scientific Initiation scholarship from CNPq (process number 117568/2019-8).
Issue: 1