No Cover Image

Journal article 444 views 60 downloads

Association of COVID-19 vaccines ChAdOx1 and BNT162b2 with major venous, arterial, or thrombocytopenic events: A population-based cohort study of 46 million adults in England

William N. Whiteley Orcid Logo, Samantha Ip Orcid Logo, Jennifer A. Cooper Orcid Logo, Thomas Bolton Orcid Logo, Spencer Keene Orcid Logo, Venexia Walker Orcid Logo, Rachel Denholm Orcid Logo, Ashley Akbari Orcid Logo, Efosa Omigie, Sam Hollings, Emanuele Di Angelantonio Orcid Logo, Spiros Denaxas Orcid Logo, Angela Wood Orcid Logo, Jonathan A. C. Sterne, Cathie Sudlow Orcid Logo, (CVD-COVID-UK consortium)

PLOS Medicine, Volume: 19, Issue: 2, Start page: e1003926

Swansea University Author: Ashley Akbari Orcid Logo

  • 60272.pdf

    PDF | Version of Record

    © 2022 Whiteley et al. This is an open access article distributed under the terms of the Creative Commons Attribution License

    Download (1.29MB)

Abstract

BackgroundThromboses in unusual locations after the Coronavirus Disease 2019 (COVID-19) vaccine ChAdOx1-S have been reported, although their frequency with vaccines of different types is uncertain at a population level. The aim of this study was to estimate the population-level risks of hospitalised...

Full description

Published in: PLOS Medicine
ISSN: 1549-1676
Published: Public Library of Science (PLoS) 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa60272
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2022-07-19T11:44:19Z
last_indexed 2023-01-13T19:20:17Z
id cronfa60272
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-07-19T12:46:11.1219690</datestamp><bib-version>v2</bib-version><id>60272</id><entry>2022-06-18</entry><title>Association of COVID-19 vaccines ChAdOx1 and BNT162b2 with major venous, arterial, or thrombocytopenic events: A population-based cohort study of 46 million adults in England</title><swanseaauthors><author><sid>aa1b025ec0243f708bb5eb0a93d6fb52</sid><ORCID>0000-0003-0814-0801</ORCID><firstname>Ashley</firstname><surname>Akbari</surname><name>Ashley Akbari</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-06-18</date><deptcode>HDAT</deptcode><abstract>BackgroundThromboses in unusual locations after the Coronavirus Disease 2019 (COVID-19) vaccine ChAdOx1-S have been reported, although their frequency with vaccines of different types is uncertain at a population level. The aim of this study was to estimate the population-level risks of hospitalised thrombocytopenia and major arterial and venous thromboses after COVID-19 vaccination.Methods and findingsIn this whole-population cohort study, we analysed linked electronic health records from adults living in England, from 8 December 2020 to 18 March 2021. We estimated incidence rates and hazard ratios (HRs) for major arterial, venous, and thrombocytopenic outcomes 1 to 28 and &gt;28 days after first vaccination dose for ChAdOx1-S and BNT162b2 vaccines. Analyses were performed separately for ages &lt;70 and &#x2265;70 years and adjusted for age, age2, sex, ethnicity, and deprivation. We also prespecified adjustment for anticoagulant medication, combined oral contraceptive medication, hormone replacement therapy medication, history of pulmonary embolism or deep vein thrombosis, and history of coronavirus infection in analyses of venous thrombosis; and diabetes, hypertension, smoking, antiplatelet medication, blood pressure lowering medication, lipid lowering medication, anticoagulant medication, history of stroke, and history of myocardial infarction in analyses of arterial thromboses. We selected further covariates with backward selection.Of 46 million adults, 23 million (51%) were women; 39 million (84%) were &lt;70; and 3.7 million (8.1%) Asian or Asian British, 1.6 million (3.5%) Black or Black British, 36 million (79%) White, 0.7 million (1.5%) mixed ethnicity, and 1.5 million (3.2%) were of another ethnicity. Approximately 21 million (46%) adults had their first vaccination between 8 December 2020 and 18 March 2021.The crude incidence rates (per 100,000 person-years) of all venous events were as follows: prevaccination, 140 [95% confidence interval (CI): 138 to 142]; &#x2264;28 days post-ChAdOx1-S, 294 (281 to 307); &gt;28 days post-ChAdOx1-S, 359 (338 to 382), &#x2264;28 days post-BNT162b2-S, 241 (229 to 253); &gt;28 days post-BNT162b2-S 277 (263 to 291). The crude incidence rates (per 100,000 person-years) of all arterial events were as follows: prevaccination, 546 (95% CI: 541 to 555); &#x2264;28 days post-ChAdOx1-S, 1,211 (1,185 to 1,237); &gt;28 days post-ChAdOx1-S, 1678 (1,630 to 1,726), &#x2264;28 days post-BNT162b2-S, 1,242 (1,214 to 1,269); &gt;28 days post-BNT162b2-S, 1,539 (1,507 to 1,572).Adjusted HRs (aHRs) 1 to 28 days after ChAdOx1-S, compared with unvaccinated rates, at ages &lt;70 and &#x2265;70 years, respectively, were 0.97 (95% CI: 0.90 to 1.05) and 0.58 (0.53 to 0.63) for venous thromboses, and 0.90 (0.86 to 0.95) and 0.76 (0.73 to 0.79) for arterial thromboses. Corresponding aHRs for BNT162b2 were 0.81 (0.74 to 0.88) and 0.57 (0.53 to 0.62) for venous thromboses, and 0.94 (0.90 to 0.99) and 0.72 (0.70 to 0.75) for arterial thromboses. aHRs for thrombotic events were higher at younger ages for venous thromboses after ChAdOx1-S, and for arterial thromboses after both vaccines.Rates of intracranial venous thrombosis (ICVT) and of thrombocytopenia in adults aged &lt;70 years were higher 1 to 28 days after ChAdOx1-S (aHRs 2.27, 95% CI: 1.33 to 3.88 and 1.71, 1.35 to 2.16, respectively), but not after BNT162b2 (0.59, 0.24 to 1.45 and 1.00, 0.75 to 1.34) compared with unvaccinated. The corresponding absolute excess risks of ICVT 1 to 28 days after ChAdOx1-S were 0.9 to 3 per million, varying by age and sex.The main limitations of the study are as follows: (i) it relies on the accuracy of coded healthcare data to identify exposures, covariates, and outcomes; (ii) the use of primary reason for hospital admission to measure outcome, which improves the positive predictive value but may lead to an underestimation of incidence; and (iii) potential unmeasured confounding.ConclusionsIn this study, we observed increases in rates of ICVT and thrombocytopenia after ChAdOx1-S vaccination in adults aged &lt;70 years that were small compared with its effect in reducing COVID-19 morbidity and mortality, although more precise estimates for adults aged &lt;40 years are needed. For people aged &#x2265;70 years, rates of arterial or venous thrombotic events were generally lower after either vaccine compared with unvaccinated, suggesting that either vaccine is suitable in this age group.</abstract><type>Journal Article</type><journal>PLOS Medicine</journal><volume>19</volume><journalNumber>2</journalNumber><paginationStart>e1003926</paginationStart><paginationEnd/><publisher>Public Library of Science (PLoS)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>1549-1676</issnElectronic><keywords/><publishedDay>22</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-02-22</publishedDate><doi>10.1371/journal.pmed.1003926</doi><url/><notes/><college>COLLEGE NANME</college><department>Health Data Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>HDAT</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>The British Heart Foundation Data Science Centre (grant No SP/19/3/34678 awarded to Health Data Research (HDRUK) funded codevelopment (with NHS Digital) of the trusted research environment provision of linked datasets, data access, user software licences, computational usage, and data management and wrangling support. Support was also provided through the Data and Connectivity and Longitudinal Health and Wellbeing National Core Studies, which were established through the UK Government&#x2019;s Chief Scientific Adviser&#x2019;s National Core Studies program to coordinate COVID-19 priority research. Consortium partner organisations funded the time of contributing data analysts, biostatisticians, epidemiologists, and clinicians. WW is supported by the Chief Scientist&#x2019;s Office (CAF/01/17). CS, AW and WW are supported by Stroke Association (SA CV 20/100018). SI was funded by a BHF-Turing Cardiovascular Data Science 419 Award (BCDSA\100005) and is funded by the International Alliance for Cancer Early Detection, a partnership between Cancer Research UK C18081/A31373, Canary Center at Stanford University, the University of Cambridge, OHSU Knight Cancer Institute, University College London and the University of Manchester. AMW is supported by the BHF-Turing Cardiovascular Data Science Award (BCDSA/100005) and by core funding from UK MRC (MR/L003120/1), BHF (RG/13/13/30194, RG/18/13/33946), and NIHR Cambridge Biomedical Research Centre (BRC/1215/20014). AMW and SD are part of the BigData@Heart Consortium, funded by the Innovative Medicines Initiative-2 Joint Undertaking under grant agreement No 116074.</funders><lastEdited>2022-07-19T12:46:11.1219690</lastEdited><Created>2022-06-18T10:40:13.4395621</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Medicine</level></path><authors><author><firstname>William N.</firstname><surname>Whiteley</surname><orcid>0000-0002-4816-8991</orcid><order>1</order></author><author><firstname>Samantha</firstname><surname>Ip</surname><orcid>0000-0001-9162-6727</orcid><order>2</order></author><author><firstname>Jennifer A.</firstname><surname>Cooper</surname><orcid>0000-0001-9364-7353</orcid><order>3</order></author><author><firstname>Thomas</firstname><surname>Bolton</surname><orcid>0000-0002-2998-7975</orcid><order>4</order></author><author><firstname>Spencer</firstname><surname>Keene</surname><orcid>0000-0003-0622-6476</orcid><order>5</order></author><author><firstname>Venexia</firstname><surname>Walker</surname><orcid>0000-0001-5064-446x</orcid><order>6</order></author><author><firstname>Rachel</firstname><surname>Denholm</surname><orcid>0000-0002-8067-5440</orcid><order>7</order></author><author><firstname>Ashley</firstname><surname>Akbari</surname><orcid>0000-0003-0814-0801</orcid><order>8</order></author><author><firstname>Efosa</firstname><surname>Omigie</surname><order>9</order></author><author><firstname>Sam</firstname><surname>Hollings</surname><order>10</order></author><author><firstname>Emanuele Di</firstname><surname>Angelantonio</surname><orcid>0000-0001-8776-6719</orcid><order>11</order></author><author><firstname>Spiros</firstname><surname>Denaxas</surname><orcid>0000-0001-9612-7791</orcid><order>12</order></author><author><firstname>Angela</firstname><surname>Wood</surname><orcid>0000-0002-7937-304x</orcid><order>13</order></author><author><firstname>Jonathan A. C.</firstname><surname>Sterne</surname><order>14</order></author><author><firstname>Cathie</firstname><surname>Sudlow</surname><orcid>0000-0002-7725-7520</orcid><order>15</order></author><author><firstname>(CVD-COVID-UK</firstname><surname>consortium)</surname><order>16</order></author></authors><documents><document><filename>60272__24637__563c0672681542c7b1b739154043efaa.pdf</filename><originalFilename>60272.pdf</originalFilename><uploaded>2022-07-19T12:44:47.4395494</uploaded><type>Output</type><contentLength>1352580</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; 2022 Whiteley et al. This is an open access article distributed under the terms of the Creative Commons Attribution License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-07-19T12:46:11.1219690 v2 60272 2022-06-18 Association of COVID-19 vaccines ChAdOx1 and BNT162b2 with major venous, arterial, or thrombocytopenic events: A population-based cohort study of 46 million adults in England aa1b025ec0243f708bb5eb0a93d6fb52 0000-0003-0814-0801 Ashley Akbari Ashley Akbari true false 2022-06-18 HDAT BackgroundThromboses in unusual locations after the Coronavirus Disease 2019 (COVID-19) vaccine ChAdOx1-S have been reported, although their frequency with vaccines of different types is uncertain at a population level. The aim of this study was to estimate the population-level risks of hospitalised thrombocytopenia and major arterial and venous thromboses after COVID-19 vaccination.Methods and findingsIn this whole-population cohort study, we analysed linked electronic health records from adults living in England, from 8 December 2020 to 18 March 2021. We estimated incidence rates and hazard ratios (HRs) for major arterial, venous, and thrombocytopenic outcomes 1 to 28 and >28 days after first vaccination dose for ChAdOx1-S and BNT162b2 vaccines. Analyses were performed separately for ages <70 and ≥70 years and adjusted for age, age2, sex, ethnicity, and deprivation. We also prespecified adjustment for anticoagulant medication, combined oral contraceptive medication, hormone replacement therapy medication, history of pulmonary embolism or deep vein thrombosis, and history of coronavirus infection in analyses of venous thrombosis; and diabetes, hypertension, smoking, antiplatelet medication, blood pressure lowering medication, lipid lowering medication, anticoagulant medication, history of stroke, and history of myocardial infarction in analyses of arterial thromboses. We selected further covariates with backward selection.Of 46 million adults, 23 million (51%) were women; 39 million (84%) were <70; and 3.7 million (8.1%) Asian or Asian British, 1.6 million (3.5%) Black or Black British, 36 million (79%) White, 0.7 million (1.5%) mixed ethnicity, and 1.5 million (3.2%) were of another ethnicity. Approximately 21 million (46%) adults had their first vaccination between 8 December 2020 and 18 March 2021.The crude incidence rates (per 100,000 person-years) of all venous events were as follows: prevaccination, 140 [95% confidence interval (CI): 138 to 142]; ≤28 days post-ChAdOx1-S, 294 (281 to 307); >28 days post-ChAdOx1-S, 359 (338 to 382), ≤28 days post-BNT162b2-S, 241 (229 to 253); >28 days post-BNT162b2-S 277 (263 to 291). The crude incidence rates (per 100,000 person-years) of all arterial events were as follows: prevaccination, 546 (95% CI: 541 to 555); ≤28 days post-ChAdOx1-S, 1,211 (1,185 to 1,237); >28 days post-ChAdOx1-S, 1678 (1,630 to 1,726), ≤28 days post-BNT162b2-S, 1,242 (1,214 to 1,269); >28 days post-BNT162b2-S, 1,539 (1,507 to 1,572).Adjusted HRs (aHRs) 1 to 28 days after ChAdOx1-S, compared with unvaccinated rates, at ages <70 and ≥70 years, respectively, were 0.97 (95% CI: 0.90 to 1.05) and 0.58 (0.53 to 0.63) for venous thromboses, and 0.90 (0.86 to 0.95) and 0.76 (0.73 to 0.79) for arterial thromboses. Corresponding aHRs for BNT162b2 were 0.81 (0.74 to 0.88) and 0.57 (0.53 to 0.62) for venous thromboses, and 0.94 (0.90 to 0.99) and 0.72 (0.70 to 0.75) for arterial thromboses. aHRs for thrombotic events were higher at younger ages for venous thromboses after ChAdOx1-S, and for arterial thromboses after both vaccines.Rates of intracranial venous thrombosis (ICVT) and of thrombocytopenia in adults aged <70 years were higher 1 to 28 days after ChAdOx1-S (aHRs 2.27, 95% CI: 1.33 to 3.88 and 1.71, 1.35 to 2.16, respectively), but not after BNT162b2 (0.59, 0.24 to 1.45 and 1.00, 0.75 to 1.34) compared with unvaccinated. The corresponding absolute excess risks of ICVT 1 to 28 days after ChAdOx1-S were 0.9 to 3 per million, varying by age and sex.The main limitations of the study are as follows: (i) it relies on the accuracy of coded healthcare data to identify exposures, covariates, and outcomes; (ii) the use of primary reason for hospital admission to measure outcome, which improves the positive predictive value but may lead to an underestimation of incidence; and (iii) potential unmeasured confounding.ConclusionsIn this study, we observed increases in rates of ICVT and thrombocytopenia after ChAdOx1-S vaccination in adults aged <70 years that were small compared with its effect in reducing COVID-19 morbidity and mortality, although more precise estimates for adults aged <40 years are needed. For people aged ≥70 years, rates of arterial or venous thrombotic events were generally lower after either vaccine compared with unvaccinated, suggesting that either vaccine is suitable in this age group. Journal Article PLOS Medicine 19 2 e1003926 Public Library of Science (PLoS) 1549-1676 22 2 2022 2022-02-22 10.1371/journal.pmed.1003926 COLLEGE NANME Health Data Science COLLEGE CODE HDAT Swansea University Another institution paid the OA fee The British Heart Foundation Data Science Centre (grant No SP/19/3/34678 awarded to Health Data Research (HDRUK) funded codevelopment (with NHS Digital) of the trusted research environment provision of linked datasets, data access, user software licences, computational usage, and data management and wrangling support. Support was also provided through the Data and Connectivity and Longitudinal Health and Wellbeing National Core Studies, which were established through the UK Government’s Chief Scientific Adviser’s National Core Studies program to coordinate COVID-19 priority research. Consortium partner organisations funded the time of contributing data analysts, biostatisticians, epidemiologists, and clinicians. WW is supported by the Chief Scientist’s Office (CAF/01/17). CS, AW and WW are supported by Stroke Association (SA CV 20/100018). SI was funded by a BHF-Turing Cardiovascular Data Science 419 Award (BCDSA\100005) and is funded by the International Alliance for Cancer Early Detection, a partnership between Cancer Research UK C18081/A31373, Canary Center at Stanford University, the University of Cambridge, OHSU Knight Cancer Institute, University College London and the University of Manchester. AMW is supported by the BHF-Turing Cardiovascular Data Science Award (BCDSA/100005) and by core funding from UK MRC (MR/L003120/1), BHF (RG/13/13/30194, RG/18/13/33946), and NIHR Cambridge Biomedical Research Centre (BRC/1215/20014). AMW and SD are part of the BigData@Heart Consortium, funded by the Innovative Medicines Initiative-2 Joint Undertaking under grant agreement No 116074. 2022-07-19T12:46:11.1219690 2022-06-18T10:40:13.4395621 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Medicine William N. Whiteley 0000-0002-4816-8991 1 Samantha Ip 0000-0001-9162-6727 2 Jennifer A. Cooper 0000-0001-9364-7353 3 Thomas Bolton 0000-0002-2998-7975 4 Spencer Keene 0000-0003-0622-6476 5 Venexia Walker 0000-0001-5064-446x 6 Rachel Denholm 0000-0002-8067-5440 7 Ashley Akbari 0000-0003-0814-0801 8 Efosa Omigie 9 Sam Hollings 10 Emanuele Di Angelantonio 0000-0001-8776-6719 11 Spiros Denaxas 0000-0001-9612-7791 12 Angela Wood 0000-0002-7937-304x 13 Jonathan A. C. Sterne 14 Cathie Sudlow 0000-0002-7725-7520 15 (CVD-COVID-UK consortium) 16 60272__24637__563c0672681542c7b1b739154043efaa.pdf 60272.pdf 2022-07-19T12:44:47.4395494 Output 1352580 application/pdf Version of Record true © 2022 Whiteley et al. This is an open access article distributed under the terms of the Creative Commons Attribution License true eng http://creativecommons.org/licenses/by/4.0/
title Association of COVID-19 vaccines ChAdOx1 and BNT162b2 with major venous, arterial, or thrombocytopenic events: A population-based cohort study of 46 million adults in England
spellingShingle Association of COVID-19 vaccines ChAdOx1 and BNT162b2 with major venous, arterial, or thrombocytopenic events: A population-based cohort study of 46 million adults in England
Ashley Akbari
title_short Association of COVID-19 vaccines ChAdOx1 and BNT162b2 with major venous, arterial, or thrombocytopenic events: A population-based cohort study of 46 million adults in England
title_full Association of COVID-19 vaccines ChAdOx1 and BNT162b2 with major venous, arterial, or thrombocytopenic events: A population-based cohort study of 46 million adults in England
title_fullStr Association of COVID-19 vaccines ChAdOx1 and BNT162b2 with major venous, arterial, or thrombocytopenic events: A population-based cohort study of 46 million adults in England
title_full_unstemmed Association of COVID-19 vaccines ChAdOx1 and BNT162b2 with major venous, arterial, or thrombocytopenic events: A population-based cohort study of 46 million adults in England
title_sort Association of COVID-19 vaccines ChAdOx1 and BNT162b2 with major venous, arterial, or thrombocytopenic events: A population-based cohort study of 46 million adults in England
author_id_str_mv aa1b025ec0243f708bb5eb0a93d6fb52
author_id_fullname_str_mv aa1b025ec0243f708bb5eb0a93d6fb52_***_Ashley Akbari
author Ashley Akbari
author2 William N. Whiteley
Samantha Ip
Jennifer A. Cooper
Thomas Bolton
Spencer Keene
Venexia Walker
Rachel Denholm
Ashley Akbari
Efosa Omigie
Sam Hollings
Emanuele Di Angelantonio
Spiros Denaxas
Angela Wood
Jonathan A. C. Sterne
Cathie Sudlow
(CVD-COVID-UK consortium)
format Journal article
container_title PLOS Medicine
container_volume 19
container_issue 2
container_start_page e1003926
publishDate 2022
institution Swansea University
issn 1549-1676
doi_str_mv 10.1371/journal.pmed.1003926
publisher Public Library of Science (PLoS)
college_str Faculty of Medicine, Health and Life Sciences
hierarchytype
hierarchy_top_id facultyofmedicinehealthandlifesciences
hierarchy_top_title Faculty of Medicine, Health and Life Sciences
hierarchy_parent_id facultyofmedicinehealthandlifesciences
hierarchy_parent_title Faculty of Medicine, Health and Life Sciences
department_str Swansea University Medical School - Medicine{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Medicine
document_store_str 1
active_str 0
description BackgroundThromboses in unusual locations after the Coronavirus Disease 2019 (COVID-19) vaccine ChAdOx1-S have been reported, although their frequency with vaccines of different types is uncertain at a population level. The aim of this study was to estimate the population-level risks of hospitalised thrombocytopenia and major arterial and venous thromboses after COVID-19 vaccination.Methods and findingsIn this whole-population cohort study, we analysed linked electronic health records from adults living in England, from 8 December 2020 to 18 March 2021. We estimated incidence rates and hazard ratios (HRs) for major arterial, venous, and thrombocytopenic outcomes 1 to 28 and >28 days after first vaccination dose for ChAdOx1-S and BNT162b2 vaccines. Analyses were performed separately for ages <70 and ≥70 years and adjusted for age, age2, sex, ethnicity, and deprivation. We also prespecified adjustment for anticoagulant medication, combined oral contraceptive medication, hormone replacement therapy medication, history of pulmonary embolism or deep vein thrombosis, and history of coronavirus infection in analyses of venous thrombosis; and diabetes, hypertension, smoking, antiplatelet medication, blood pressure lowering medication, lipid lowering medication, anticoagulant medication, history of stroke, and history of myocardial infarction in analyses of arterial thromboses. We selected further covariates with backward selection.Of 46 million adults, 23 million (51%) were women; 39 million (84%) were <70; and 3.7 million (8.1%) Asian or Asian British, 1.6 million (3.5%) Black or Black British, 36 million (79%) White, 0.7 million (1.5%) mixed ethnicity, and 1.5 million (3.2%) were of another ethnicity. Approximately 21 million (46%) adults had their first vaccination between 8 December 2020 and 18 March 2021.The crude incidence rates (per 100,000 person-years) of all venous events were as follows: prevaccination, 140 [95% confidence interval (CI): 138 to 142]; ≤28 days post-ChAdOx1-S, 294 (281 to 307); >28 days post-ChAdOx1-S, 359 (338 to 382), ≤28 days post-BNT162b2-S, 241 (229 to 253); >28 days post-BNT162b2-S 277 (263 to 291). The crude incidence rates (per 100,000 person-years) of all arterial events were as follows: prevaccination, 546 (95% CI: 541 to 555); ≤28 days post-ChAdOx1-S, 1,211 (1,185 to 1,237); >28 days post-ChAdOx1-S, 1678 (1,630 to 1,726), ≤28 days post-BNT162b2-S, 1,242 (1,214 to 1,269); >28 days post-BNT162b2-S, 1,539 (1,507 to 1,572).Adjusted HRs (aHRs) 1 to 28 days after ChAdOx1-S, compared with unvaccinated rates, at ages <70 and ≥70 years, respectively, were 0.97 (95% CI: 0.90 to 1.05) and 0.58 (0.53 to 0.63) for venous thromboses, and 0.90 (0.86 to 0.95) and 0.76 (0.73 to 0.79) for arterial thromboses. Corresponding aHRs for BNT162b2 were 0.81 (0.74 to 0.88) and 0.57 (0.53 to 0.62) for venous thromboses, and 0.94 (0.90 to 0.99) and 0.72 (0.70 to 0.75) for arterial thromboses. aHRs for thrombotic events were higher at younger ages for venous thromboses after ChAdOx1-S, and for arterial thromboses after both vaccines.Rates of intracranial venous thrombosis (ICVT) and of thrombocytopenia in adults aged <70 years were higher 1 to 28 days after ChAdOx1-S (aHRs 2.27, 95% CI: 1.33 to 3.88 and 1.71, 1.35 to 2.16, respectively), but not after BNT162b2 (0.59, 0.24 to 1.45 and 1.00, 0.75 to 1.34) compared with unvaccinated. The corresponding absolute excess risks of ICVT 1 to 28 days after ChAdOx1-S were 0.9 to 3 per million, varying by age and sex.The main limitations of the study are as follows: (i) it relies on the accuracy of coded healthcare data to identify exposures, covariates, and outcomes; (ii) the use of primary reason for hospital admission to measure outcome, which improves the positive predictive value but may lead to an underestimation of incidence; and (iii) potential unmeasured confounding.ConclusionsIn this study, we observed increases in rates of ICVT and thrombocytopenia after ChAdOx1-S vaccination in adults aged <70 years that were small compared with its effect in reducing COVID-19 morbidity and mortality, although more precise estimates for adults aged <40 years are needed. For people aged ≥70 years, rates of arterial or venous thrombotic events were generally lower after either vaccine compared with unvaccinated, suggesting that either vaccine is suitable in this age group.
published_date 2022-02-22T04:18:15Z
_version_ 1763754215116636160
score 11.016593