E-Thesis 668 views
Powder Interlayer Bonding as a Novel Joining Technology for Next Generation Nickel-Based Superalloys for Aerospace Applications / OLIVIA STANNERS
Swansea University Author: OLIVIA STANNERS
DOI (Published version): 10.23889/SUthesis.59838
Abstract
The purpose of this PhD project was to further develop the Powder Interlayer Bonding (PIB) technology that has been created at Swansea University. Previous work had focussed on using the technology for a range of titanium alloys for the aerospace industry. This PhD aimed to further its development b...
Published: |
Swansea
2022
|
---|---|
Institution: | Swansea University |
Degree level: | Doctoral |
Degree name: | Ph.D |
Supervisor: | Davies, Helen M. ; Marchsio, Silvia |
URI: | https://cronfa.swan.ac.uk/Record/cronfa59838 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2022-04-15T12:28:32Z |
---|---|
last_indexed |
2022-04-16T03:31:52Z |
id |
cronfa59838 |
recordtype |
RisThesis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-04-15T13:37:27.3291655</datestamp><bib-version>v2</bib-version><id>59838</id><entry>2022-04-15</entry><title>Powder Interlayer Bonding as a Novel Joining Technology for Next Generation Nickel-Based Superalloys for Aerospace Applications</title><swanseaauthors><author><sid>60272a6d9567e07fbd5a49b84abad598</sid><firstname>OLIVIA</firstname><surname>STANNERS</surname><name>OLIVIA STANNERS</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-04-15</date><abstract>The purpose of this PhD project was to further develop the Powder Interlayer Bonding (PIB) technology that has been created at Swansea University. Previous work had focussed on using the technology for a range of titanium alloys for the aerospace industry. This PhD aimed to further its development by investigating the technology’s feasibility for the joining of nickel-based superalloys. A next generation nickel-based superalloy was developed by Rolls-Royce plc and initial studies indicated it was difficult to join using traditional welding methods such as inertia friction welding. Therefore, it was of interest to investigate the feasibility of PIB for this alloy. PIB relies on a powder interlayer between two faying surfaces to reduce the effect of surface asperities and to aid the formation of a successful joint between two specimens. Initial results proved PIB to be a feasible joining technique for the next generation nickel-based superalloy and the range of parameters for successful bonding investigated. The microstructure of the alloy, both pre- and post-bonding, was analysed revealing a finer grained microstructure at the bonded region than the surrounding base material. In addition, the bondlines were found to have porosity levels lower than their surrounding base materials. Successfully bonded specimens underwent mechanical testing to explore their integrity. The tensile strengths of the bonds were below desired criteria of a repaired aerospace component, emphasising the need for post-bonding heat treatments on PIB next generation nickel-based superalloy and sufficient heating at the interlayer region during the PIB process to ensure consolidation of the powder. The final stages of the project involved undertaking preliminary work for PIB technology to be used to join nickel-based superalloys of dissimilar chemistries (Inconel 718, RR1000 and next generation nickel-based superalloy) with evidence of low porosity dissimilar bonds being attainable.</abstract><type>E-Thesis</type><journal/><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher/><placeOfPublication>Swansea</placeOfPublication><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords>nickel-based superalloys, aerospace alloys, powder interlayer bonding, joining, repair</keywords><publishedDay>12</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-04-12</publishedDate><doi>10.23889/SUthesis.59838</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><supervisor>Davies, Helen M. ; Marchsio, Silvia</supervisor><degreelevel>Doctoral</degreelevel><degreename>Ph.D</degreename><degreesponsorsfunders>EPSRC; Rolls-Royce plc</degreesponsorsfunders><apcterm/><lastEdited>2022-04-15T13:37:27.3291655</lastEdited><Created>2022-04-15T13:24:57.5082334</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>OLIVIA</firstname><surname>STANNERS</surname><order>1</order></author></authors><documents><document><filename>Under embargo</filename><originalFilename>Under embargo</originalFilename><uploaded>2022-04-15T13:35:23.6751480</uploaded><type>Output</type><contentLength>13646025</contentLength><contentType>application/pdf</contentType><version>E-Thesis – open access</version><cronfaStatus>true</cronfaStatus><embargoDate>2027-04-12T00:00:00.0000000</embargoDate><documentNotes>Copyright: The author, Olivia G. Stanners, 2022</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-04-15T13:37:27.3291655 v2 59838 2022-04-15 Powder Interlayer Bonding as a Novel Joining Technology for Next Generation Nickel-Based Superalloys for Aerospace Applications 60272a6d9567e07fbd5a49b84abad598 OLIVIA STANNERS OLIVIA STANNERS true false 2022-04-15 The purpose of this PhD project was to further develop the Powder Interlayer Bonding (PIB) technology that has been created at Swansea University. Previous work had focussed on using the technology for a range of titanium alloys for the aerospace industry. This PhD aimed to further its development by investigating the technology’s feasibility for the joining of nickel-based superalloys. A next generation nickel-based superalloy was developed by Rolls-Royce plc and initial studies indicated it was difficult to join using traditional welding methods such as inertia friction welding. Therefore, it was of interest to investigate the feasibility of PIB for this alloy. PIB relies on a powder interlayer between two faying surfaces to reduce the effect of surface asperities and to aid the formation of a successful joint between two specimens. Initial results proved PIB to be a feasible joining technique for the next generation nickel-based superalloy and the range of parameters for successful bonding investigated. The microstructure of the alloy, both pre- and post-bonding, was analysed revealing a finer grained microstructure at the bonded region than the surrounding base material. In addition, the bondlines were found to have porosity levels lower than their surrounding base materials. Successfully bonded specimens underwent mechanical testing to explore their integrity. The tensile strengths of the bonds were below desired criteria of a repaired aerospace component, emphasising the need for post-bonding heat treatments on PIB next generation nickel-based superalloy and sufficient heating at the interlayer region during the PIB process to ensure consolidation of the powder. The final stages of the project involved undertaking preliminary work for PIB technology to be used to join nickel-based superalloys of dissimilar chemistries (Inconel 718, RR1000 and next generation nickel-based superalloy) with evidence of low porosity dissimilar bonds being attainable. E-Thesis Swansea nickel-based superalloys, aerospace alloys, powder interlayer bonding, joining, repair 12 4 2022 2022-04-12 10.23889/SUthesis.59838 COLLEGE NANME COLLEGE CODE Swansea University Davies, Helen M. ; Marchsio, Silvia Doctoral Ph.D EPSRC; Rolls-Royce plc 2022-04-15T13:37:27.3291655 2022-04-15T13:24:57.5082334 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised OLIVIA STANNERS 1 Under embargo Under embargo 2022-04-15T13:35:23.6751480 Output 13646025 application/pdf E-Thesis – open access true 2027-04-12T00:00:00.0000000 Copyright: The author, Olivia G. Stanners, 2022 true eng |
title |
Powder Interlayer Bonding as a Novel Joining Technology for Next Generation Nickel-Based Superalloys for Aerospace Applications |
spellingShingle |
Powder Interlayer Bonding as a Novel Joining Technology for Next Generation Nickel-Based Superalloys for Aerospace Applications OLIVIA STANNERS |
title_short |
Powder Interlayer Bonding as a Novel Joining Technology for Next Generation Nickel-Based Superalloys for Aerospace Applications |
title_full |
Powder Interlayer Bonding as a Novel Joining Technology for Next Generation Nickel-Based Superalloys for Aerospace Applications |
title_fullStr |
Powder Interlayer Bonding as a Novel Joining Technology for Next Generation Nickel-Based Superalloys for Aerospace Applications |
title_full_unstemmed |
Powder Interlayer Bonding as a Novel Joining Technology for Next Generation Nickel-Based Superalloys for Aerospace Applications |
title_sort |
Powder Interlayer Bonding as a Novel Joining Technology for Next Generation Nickel-Based Superalloys for Aerospace Applications |
author_id_str_mv |
60272a6d9567e07fbd5a49b84abad598 |
author_id_fullname_str_mv |
60272a6d9567e07fbd5a49b84abad598_***_OLIVIA STANNERS |
author |
OLIVIA STANNERS |
author2 |
OLIVIA STANNERS |
format |
E-Thesis |
publishDate |
2022 |
institution |
Swansea University |
doi_str_mv |
10.23889/SUthesis.59838 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised |
document_store_str |
0 |
active_str |
0 |
description |
The purpose of this PhD project was to further develop the Powder Interlayer Bonding (PIB) technology that has been created at Swansea University. Previous work had focussed on using the technology for a range of titanium alloys for the aerospace industry. This PhD aimed to further its development by investigating the technology’s feasibility for the joining of nickel-based superalloys. A next generation nickel-based superalloy was developed by Rolls-Royce plc and initial studies indicated it was difficult to join using traditional welding methods such as inertia friction welding. Therefore, it was of interest to investigate the feasibility of PIB for this alloy. PIB relies on a powder interlayer between two faying surfaces to reduce the effect of surface asperities and to aid the formation of a successful joint between two specimens. Initial results proved PIB to be a feasible joining technique for the next generation nickel-based superalloy and the range of parameters for successful bonding investigated. The microstructure of the alloy, both pre- and post-bonding, was analysed revealing a finer grained microstructure at the bonded region than the surrounding base material. In addition, the bondlines were found to have porosity levels lower than their surrounding base materials. Successfully bonded specimens underwent mechanical testing to explore their integrity. The tensile strengths of the bonds were below desired criteria of a repaired aerospace component, emphasising the need for post-bonding heat treatments on PIB next generation nickel-based superalloy and sufficient heating at the interlayer region during the PIB process to ensure consolidation of the powder. The final stages of the project involved undertaking preliminary work for PIB technology to be used to join nickel-based superalloys of dissimilar chemistries (Inconel 718, RR1000 and next generation nickel-based superalloy) with evidence of low porosity dissimilar bonds being attainable. |
published_date |
2022-04-12T04:17:26Z |
_version_ |
1763754164228194304 |
score |
11.037581 |