No Cover Image

Journal article 483 views

Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study

Mehrdad A Mizani, Ashkan Dashtban, Laura Pasea, Alvina G Lai, Johan Thygesen, Chris Tomlinson Orcid Logo, Alex Handy, Jil B Mamza, Tamsin Morris, Sara Khalid, Francesco Zaccardi, Mary Joan Macleod, Fatemeh Torabi, Dexter Canoy, Ashley Akbari Orcid Logo, Colin Berry, Thomas Bolton, John Nolan, Kamlesh Khunti, Spiros Denaxas, Harry Hemingway, Cathie Sudlow, Amitava Banerjee Orcid Logo, (on behalf of the CVD-COVID-UK Consortium), Fatemeh Torabi Orcid Logo

Journal of the Royal Society of Medicine, Volume: 116, Issue: 1, Pages: 10 - 20

Swansea University Authors: Ashley Akbari Orcid Logo, Fatemeh Torabi Orcid Logo

Full text not available from this repository: check for access using links below.

Published in: Journal of the Royal Society of Medicine
ISSN: 0141-0768 1758-1095
Published: SAGE Publications 2023
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59637
first_indexed 2022-03-22T14:57:09Z
last_indexed 2023-01-12T14:52:24Z
id cronfa59637
recordtype SURis
fullrecord <?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>59637</id><entry>2022-03-16</entry><title>Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study</title><swanseaauthors><author><sid>aa1b025ec0243f708bb5eb0a93d6fb52</sid><ORCID>0000-0003-0814-0801</ORCID><firstname>Ashley</firstname><surname>Akbari</surname><name>Ashley Akbari</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>f569591e1bfb0e405b8091f99fec45d3</sid><ORCID>0000-0002-5853-4625</ORCID><firstname>Fatemeh</firstname><surname>Torabi</surname><name>Fatemeh Torabi</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-03-16</date><deptcode>HDAT</deptcode><abstract/><type>Journal Article</type><journal>Journal of the Royal Society of Medicine</journal><volume>116</volume><journalNumber>1</journalNumber><paginationStart>10</paginationStart><paginationEnd>20</paginationEnd><publisher>SAGE Publications</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0141-0768</issnPrint><issnElectronic>1758-1095</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-01-01</publishedDate><doi>10.1177/01410768221131897</doi><url>http://dx.doi.org/10.1177/01410768221131897</url><notes>The document attached is the pre-print of this article. Please follow the DOI for the official publication.</notes><college>COLLEGE NANME</college><department>Health Data Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>HDAT</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-06-01T12:35:25.9078051</lastEdited><Created>2022-03-16T11:43:12.0334530</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Medicine</level></path><authors><author><firstname>Mehrdad A</firstname><surname>Mizani</surname><order>1</order></author><author><firstname>Ashkan</firstname><surname>Dashtban</surname><order>2</order></author><author><firstname>Laura</firstname><surname>Pasea</surname><order>3</order></author><author><firstname>Alvina G</firstname><surname>Lai</surname><order>4</order></author><author><firstname>Johan</firstname><surname>Thygesen</surname><order>5</order></author><author><firstname>Chris</firstname><surname>Tomlinson</surname><orcid>0000-0002-0903-5395</orcid><order>6</order></author><author><firstname>Alex</firstname><surname>Handy</surname><order>7</order></author><author><firstname>Jil B</firstname><surname>Mamza</surname><order>8</order></author><author><firstname>Tamsin</firstname><surname>Morris</surname><order>9</order></author><author><firstname>Sara</firstname><surname>Khalid</surname><order>10</order></author><author><firstname>Francesco</firstname><surname>Zaccardi</surname><order>11</order></author><author><firstname>Mary Joan</firstname><surname>Macleod</surname><order>12</order></author><author><firstname>Fatemeh</firstname><surname>Torabi</surname><order>13</order></author><author><firstname>Dexter</firstname><surname>Canoy</surname><order>14</order></author><author><firstname>Ashley</firstname><surname>Akbari</surname><orcid>0000-0003-0814-0801</orcid><order>15</order></author><author><firstname>Colin</firstname><surname>Berry</surname><order>16</order></author><author><firstname>Thomas</firstname><surname>Bolton</surname><order>17</order></author><author><firstname>John</firstname><surname>Nolan</surname><order>18</order></author><author><firstname>Kamlesh</firstname><surname>Khunti</surname><order>19</order></author><author><firstname>Spiros</firstname><surname>Denaxas</surname><order>20</order></author><author><firstname>Harry</firstname><surname>Hemingway</surname><order>21</order></author><author><firstname>Cathie</firstname><surname>Sudlow</surname><order>22</order></author><author><firstname>Amitava</firstname><surname>Banerjee</surname><orcid>0000-0001-8741-3411</orcid><order>23</order></author><author><firstname>(on behalf of the CVD-COVID-UK</firstname><surname>Consortium)</surname><order>24</order></author><author><firstname>Fatemeh</firstname><surname>Torabi</surname><orcid>0000-0002-5853-4625</orcid><order>25</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling v2 59637 2022-03-16 Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study aa1b025ec0243f708bb5eb0a93d6fb52 0000-0003-0814-0801 Ashley Akbari Ashley Akbari true false f569591e1bfb0e405b8091f99fec45d3 0000-0002-5853-4625 Fatemeh Torabi Fatemeh Torabi true false 2022-03-16 HDAT Journal Article Journal of the Royal Society of Medicine 116 1 10 20 SAGE Publications 0141-0768 1758-1095 1 1 2023 2023-01-01 10.1177/01410768221131897 http://dx.doi.org/10.1177/01410768221131897 The document attached is the pre-print of this article. Please follow the DOI for the official publication. COLLEGE NANME Health Data Science COLLEGE CODE HDAT Swansea University 2023-06-01T12:35:25.9078051 2022-03-16T11:43:12.0334530 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Medicine Mehrdad A Mizani 1 Ashkan Dashtban 2 Laura Pasea 3 Alvina G Lai 4 Johan Thygesen 5 Chris Tomlinson 0000-0002-0903-5395 6 Alex Handy 7 Jil B Mamza 8 Tamsin Morris 9 Sara Khalid 10 Francesco Zaccardi 11 Mary Joan Macleod 12 Fatemeh Torabi 13 Dexter Canoy 14 Ashley Akbari 0000-0003-0814-0801 15 Colin Berry 16 Thomas Bolton 17 John Nolan 18 Kamlesh Khunti 19 Spiros Denaxas 20 Harry Hemingway 21 Cathie Sudlow 22 Amitava Banerjee 0000-0001-8741-3411 23 (on behalf of the CVD-COVID-UK Consortium) 24 Fatemeh Torabi 0000-0002-5853-4625 25
title Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study
spellingShingle Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study
Ashley Akbari
Fatemeh Torabi
title_short Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study
title_full Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study
title_fullStr Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study
title_full_unstemmed Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study
title_sort Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study
author_id_str_mv aa1b025ec0243f708bb5eb0a93d6fb52
f569591e1bfb0e405b8091f99fec45d3
author_id_fullname_str_mv aa1b025ec0243f708bb5eb0a93d6fb52_***_Ashley Akbari
f569591e1bfb0e405b8091f99fec45d3_***_Fatemeh Torabi
author Ashley Akbari
Fatemeh Torabi
author2 Mehrdad A Mizani
Ashkan Dashtban
Laura Pasea
Alvina G Lai
Johan Thygesen
Chris Tomlinson
Alex Handy
Jil B Mamza
Tamsin Morris
Sara Khalid
Francesco Zaccardi
Mary Joan Macleod
Fatemeh Torabi
Dexter Canoy
Ashley Akbari
Colin Berry
Thomas Bolton
John Nolan
Kamlesh Khunti
Spiros Denaxas
Harry Hemingway
Cathie Sudlow
Amitava Banerjee
(on behalf of the CVD-COVID-UK Consortium)
Fatemeh Torabi
format Journal article
container_title Journal of the Royal Society of Medicine
container_volume 116
container_issue 1
container_start_page 10
publishDate 2023
institution Swansea University
issn 0141-0768
1758-1095
doi_str_mv 10.1177/01410768221131897
publisher SAGE Publications
college_str Faculty of Medicine, Health and Life Sciences
hierarchytype
hierarchy_top_id facultyofmedicinehealthandlifesciences
hierarchy_top_title Faculty of Medicine, Health and Life Sciences
hierarchy_parent_id facultyofmedicinehealthandlifesciences
hierarchy_parent_title Faculty of Medicine, Health and Life Sciences
department_str Swansea University Medical School - Medicine{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Medicine
url http://dx.doi.org/10.1177/01410768221131897
document_store_str 0
active_str 0
published_date 2023-01-01T12:35:24Z
_version_ 1767499969313374208
score 11.04748