No Cover Image

Journal article 810 views 137 downloads

Glassy carbon manufacture using rapid photonic curing

Brent de Boode, Christopher Phillips Orcid Logo, John Lau, Arturas Adomkevicius, James McGettrick Orcid Logo, Davide Deganello Orcid Logo

Journal of Materials Science, Volume: 57, Issue: 1, Pages: 299 - 310

Swansea University Authors: Brent de Boode, Christopher Phillips Orcid Logo, John Lau, Arturas Adomkevicius, James McGettrick Orcid Logo, Davide Deganello Orcid Logo

  • 59137.pdf

    PDF | Version of Record

    Copyright: The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License

    Download (2.49MB)

Abstract

Photonic curing was explored as a rapid method for producing glassy carbon coatings, reducing processing time from ~ 20 h for conventional thermal processing down to ~ 1 min. A resole-type thermoset polymer resin coated on steel foil was used as a precursor, placed in a nitrogen purged container and...

Full description

Published in: Journal of Materials Science
ISSN: 0022-2461 1573-4803
Published: Springer Science and Business Media LLC 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59137
first_indexed 2022-01-10T15:49:40Z
last_indexed 2023-01-11T14:40:12Z
id cronfa59137
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-10-31T15:44:22.3240922</datestamp><bib-version>v2</bib-version><id>59137</id><entry>2022-01-10</entry><title>Glassy carbon manufacture using rapid photonic curing</title><swanseaauthors><author><sid>373c85574b29d39d997c151359a3bb40</sid><firstname>Brent</firstname><surname>de Boode</surname><name>Brent de Boode</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>cc734f776f10b3fb9b43816c9f617bb5</sid><ORCID>0000-0001-8011-710X</ORCID><firstname>Christopher</firstname><surname>Phillips</surname><name>Christopher Phillips</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e1b6042ea864c63522f465e6f1665b07</sid><firstname>John</firstname><surname>Lau</surname><name>John Lau</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>ef94edb12254e84c41ff757f0ceadf70</sid><firstname>Arturas</firstname><surname>Adomkevicius</surname><name>Arturas Adomkevicius</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>bdbacc591e2de05180e0fd3cc13fa480</sid><ORCID>0000-0002-7719-2958</ORCID><firstname>James</firstname><surname>McGettrick</surname><name>James McGettrick</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>ea38a0040bdfd3875506189e3629b32a</sid><ORCID>0000-0001-8341-4177</ORCID><firstname>Davide</firstname><surname>Deganello</surname><name>Davide Deganello</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-01-10</date><abstract>Photonic curing was explored as a rapid method for producing glassy carbon coatings, reducing processing time from ~&#x2009;20 h for conventional thermal processing down to ~&#x2009;1 min. A resole-type thermoset polymer resin coated on steel foil was used as a precursor, placed in a nitrogen purged container and exposed to high energy light (~&#x2009;27 J/cm2 per pulse for up to 20 pulses). Comparison samples were produced at 800 &#xB0;C using a conventional nitrogen purged thermal route. For both photonic and conventionally produced coatings, Raman spectroscopy and primary peak XPS data showed sp2 bonded carbon, indicative of bulk glassy carbon. This transformation evolved with increasing number of pulses, and therefore amount of energy transferred to the coating. The produced coatings were resilient, highly smooth, with no evidence of surface defects. XPS analysis indicated greater sp3 content at the immediate surface (5&#x2013;10 nm) for photonic cured carbon compared with thermally cured carbon, likely due to the local environment (temperature, atmosphere) around the surface during conversion. The ability to rapidly manufacture glassy carbon coatings provides new opportunities to expand the window of applications of glassy carbons in coatings towards large-scale high volume applications.</abstract><type>Journal Article</type><journal>Journal of Materials Science</journal><volume>57</volume><journalNumber>1</journalNumber><paginationStart>299</paginationStart><paginationEnd>310</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0022-2461</issnPrint><issnElectronic>1573-4803</issnElectronic><keywords/><publishedDay>3</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-01-03</publishedDate><doi>10.1007/s10853-021-06648-w</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>This research was financially supported by the EPSRC (Engineering and Physical Sciences Research Council) (EP/N509553/1, EP/N013727/1).</funders><projectreference/><lastEdited>2022-10-31T15:44:22.3240922</lastEdited><Created>2022-01-10T15:47:04.7675923</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Brent</firstname><surname>de Boode</surname><order>1</order></author><author><firstname>Christopher</firstname><surname>Phillips</surname><orcid>0000-0001-8011-710X</orcid><order>2</order></author><author><firstname>John</firstname><surname>Lau</surname><order>3</order></author><author><firstname>Arturas</firstname><surname>Adomkevicius</surname><order>4</order></author><author><firstname>James</firstname><surname>McGettrick</surname><orcid>0000-0002-7719-2958</orcid><order>5</order></author><author><firstname>Davide</firstname><surname>Deganello</surname><orcid>0000-0001-8341-4177</orcid><order>6</order></author></authors><documents><document><filename>59137__22101__2e0227e2ec8e44468b3313eda2013d11.pdf</filename><originalFilename>59137.pdf</originalFilename><uploaded>2022-01-10T15:51:03.6124685</uploaded><type>Output</type><contentLength>2612042</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Copyright: The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-10-31T15:44:22.3240922 v2 59137 2022-01-10 Glassy carbon manufacture using rapid photonic curing 373c85574b29d39d997c151359a3bb40 Brent de Boode Brent de Boode true false cc734f776f10b3fb9b43816c9f617bb5 0000-0001-8011-710X Christopher Phillips Christopher Phillips true false e1b6042ea864c63522f465e6f1665b07 John Lau John Lau true false ef94edb12254e84c41ff757f0ceadf70 Arturas Adomkevicius Arturas Adomkevicius true false bdbacc591e2de05180e0fd3cc13fa480 0000-0002-7719-2958 James McGettrick James McGettrick true false ea38a0040bdfd3875506189e3629b32a 0000-0001-8341-4177 Davide Deganello Davide Deganello true false 2022-01-10 Photonic curing was explored as a rapid method for producing glassy carbon coatings, reducing processing time from ~ 20 h for conventional thermal processing down to ~ 1 min. A resole-type thermoset polymer resin coated on steel foil was used as a precursor, placed in a nitrogen purged container and exposed to high energy light (~ 27 J/cm2 per pulse for up to 20 pulses). Comparison samples were produced at 800 °C using a conventional nitrogen purged thermal route. For both photonic and conventionally produced coatings, Raman spectroscopy and primary peak XPS data showed sp2 bonded carbon, indicative of bulk glassy carbon. This transformation evolved with increasing number of pulses, and therefore amount of energy transferred to the coating. The produced coatings were resilient, highly smooth, with no evidence of surface defects. XPS analysis indicated greater sp3 content at the immediate surface (5–10 nm) for photonic cured carbon compared with thermally cured carbon, likely due to the local environment (temperature, atmosphere) around the surface during conversion. The ability to rapidly manufacture glassy carbon coatings provides new opportunities to expand the window of applications of glassy carbons in coatings towards large-scale high volume applications. Journal Article Journal of Materials Science 57 1 299 310 Springer Science and Business Media LLC 0022-2461 1573-4803 3 1 2022 2022-01-03 10.1007/s10853-021-06648-w COLLEGE NANME COLLEGE CODE Swansea University SU Library paid the OA fee (TA Institutional Deal) This research was financially supported by the EPSRC (Engineering and Physical Sciences Research Council) (EP/N509553/1, EP/N013727/1). 2022-10-31T15:44:22.3240922 2022-01-10T15:47:04.7675923 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Brent de Boode 1 Christopher Phillips 0000-0001-8011-710X 2 John Lau 3 Arturas Adomkevicius 4 James McGettrick 0000-0002-7719-2958 5 Davide Deganello 0000-0001-8341-4177 6 59137__22101__2e0227e2ec8e44468b3313eda2013d11.pdf 59137.pdf 2022-01-10T15:51:03.6124685 Output 2612042 application/pdf Version of Record true Copyright: The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License true eng http://creativecommons.org/licenses/by/4.0/
title Glassy carbon manufacture using rapid photonic curing
spellingShingle Glassy carbon manufacture using rapid photonic curing
Brent de Boode
Christopher Phillips
John Lau
Arturas Adomkevicius
James McGettrick
Davide Deganello
title_short Glassy carbon manufacture using rapid photonic curing
title_full Glassy carbon manufacture using rapid photonic curing
title_fullStr Glassy carbon manufacture using rapid photonic curing
title_full_unstemmed Glassy carbon manufacture using rapid photonic curing
title_sort Glassy carbon manufacture using rapid photonic curing
author_id_str_mv 373c85574b29d39d997c151359a3bb40
cc734f776f10b3fb9b43816c9f617bb5
e1b6042ea864c63522f465e6f1665b07
ef94edb12254e84c41ff757f0ceadf70
bdbacc591e2de05180e0fd3cc13fa480
ea38a0040bdfd3875506189e3629b32a
author_id_fullname_str_mv 373c85574b29d39d997c151359a3bb40_***_Brent de Boode
cc734f776f10b3fb9b43816c9f617bb5_***_Christopher Phillips
e1b6042ea864c63522f465e6f1665b07_***_John Lau
ef94edb12254e84c41ff757f0ceadf70_***_Arturas Adomkevicius
bdbacc591e2de05180e0fd3cc13fa480_***_James McGettrick
ea38a0040bdfd3875506189e3629b32a_***_Davide Deganello
author Brent de Boode
Christopher Phillips
John Lau
Arturas Adomkevicius
James McGettrick
Davide Deganello
author2 Brent de Boode
Christopher Phillips
John Lau
Arturas Adomkevicius
James McGettrick
Davide Deganello
format Journal article
container_title Journal of Materials Science
container_volume 57
container_issue 1
container_start_page 299
publishDate 2022
institution Swansea University
issn 0022-2461
1573-4803
doi_str_mv 10.1007/s10853-021-06648-w
publisher Springer Science and Business Media LLC
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering
document_store_str 1
active_str 0
description Photonic curing was explored as a rapid method for producing glassy carbon coatings, reducing processing time from ~ 20 h for conventional thermal processing down to ~ 1 min. A resole-type thermoset polymer resin coated on steel foil was used as a precursor, placed in a nitrogen purged container and exposed to high energy light (~ 27 J/cm2 per pulse for up to 20 pulses). Comparison samples were produced at 800 °C using a conventional nitrogen purged thermal route. For both photonic and conventionally produced coatings, Raman spectroscopy and primary peak XPS data showed sp2 bonded carbon, indicative of bulk glassy carbon. This transformation evolved with increasing number of pulses, and therefore amount of energy transferred to the coating. The produced coatings were resilient, highly smooth, with no evidence of surface defects. XPS analysis indicated greater sp3 content at the immediate surface (5–10 nm) for photonic cured carbon compared with thermally cured carbon, likely due to the local environment (temperature, atmosphere) around the surface during conversion. The ability to rapidly manufacture glassy carbon coatings provides new opportunities to expand the window of applications of glassy carbons in coatings towards large-scale high volume applications.
published_date 2022-01-03T14:17:03Z
_version_ 1821415334358286336
score 11.048194