No Cover Image

Journal article 808 views 137 downloads

Glassy carbon manufacture using rapid photonic curing

Brent de Boode, Christopher Phillips Orcid Logo, John Lau, Arturas Adomkevicius, James McGettrick Orcid Logo, Davide Deganello Orcid Logo

Journal of Materials Science, Volume: 57, Issue: 1, Pages: 299 - 310

Swansea University Authors: Brent de Boode, Christopher Phillips Orcid Logo, John Lau, Arturas Adomkevicius, James McGettrick Orcid Logo, Davide Deganello Orcid Logo

  • 59137.pdf

    PDF | Version of Record

    Copyright: The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License

    Download (2.49MB)

Abstract

Photonic curing was explored as a rapid method for producing glassy carbon coatings, reducing processing time from ~ 20 h for conventional thermal processing down to ~ 1 min. A resole-type thermoset polymer resin coated on steel foil was used as a precursor, placed in a nitrogen purged container and...

Full description

Published in: Journal of Materials Science
ISSN: 0022-2461 1573-4803
Published: Springer Science and Business Media LLC 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59137
Abstract: Photonic curing was explored as a rapid method for producing glassy carbon coatings, reducing processing time from ~ 20 h for conventional thermal processing down to ~ 1 min. A resole-type thermoset polymer resin coated on steel foil was used as a precursor, placed in a nitrogen purged container and exposed to high energy light (~ 27 J/cm2 per pulse for up to 20 pulses). Comparison samples were produced at 800 °C using a conventional nitrogen purged thermal route. For both photonic and conventionally produced coatings, Raman spectroscopy and primary peak XPS data showed sp2 bonded carbon, indicative of bulk glassy carbon. This transformation evolved with increasing number of pulses, and therefore amount of energy transferred to the coating. The produced coatings were resilient, highly smooth, with no evidence of surface defects. XPS analysis indicated greater sp3 content at the immediate surface (5–10 nm) for photonic cured carbon compared with thermally cured carbon, likely due to the local environment (temperature, atmosphere) around the surface during conversion. The ability to rapidly manufacture glassy carbon coatings provides new opportunities to expand the window of applications of glassy carbons in coatings towards large-scale high volume applications.
College: Faculty of Science and Engineering
Funders: This research was financially supported by the EPSRC (Engineering and Physical Sciences Research Council) (EP/N509553/1, EP/N013727/1).
Issue: 1
Start Page: 299
End Page: 310