Journal article 882 views 224 downloads
A directed graph convolutional neural network for edge-structured signals in link-fault detection
Pattern Recognition Letters, Volume: 153, Pages: 100 - 106
Swansea University Authors: Michael Kenning, Jingjing Deng, Mike Edwards , Xianghua Xie
-
PDF | Accepted Manuscript
©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)
Download (565.08KB)
DOI (Published version): 10.1016/j.patrec.2021.12.003
Abstract
A directed graph convolutional neural network for edge-structured signals in link-fault detection
Published in: | Pattern Recognition Letters |
---|---|
ISSN: | 0167-8655 |
Published: |
Elsevier BV
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa59018 |
first_indexed |
2021-12-31T15:53:57Z |
---|---|
last_indexed |
2022-01-13T04:29:16Z |
id |
cronfa59018 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-01-12T13:04:39.7657616</datestamp><bib-version>v2</bib-version><id>59018</id><entry>2021-12-16</entry><title>A directed graph convolutional neural network for edge-structured signals in link-fault detection</title><swanseaauthors><author><sid>3fcab7bac19385191914aa7e98b88e07</sid><firstname>Michael</firstname><surname>Kenning</surname><name>Michael Kenning</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>6f6d01d585363d6dc1622640bb4fcb3f</sid><firstname>Jingjing</firstname><surname>Deng</surname><name>Jingjing Deng</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>684864a1ce01c3d774e83ed55e41770e</sid><ORCID>0000-0003-3367-969X</ORCID><firstname>Mike</firstname><surname>Edwards</surname><name>Mike Edwards</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-12-16</date><deptcode>SEA</deptcode><abstract/><type>Journal Article</type><journal>Pattern Recognition Letters</journal><volume>153</volume><journalNumber/><paginationStart>100</paginationStart><paginationEnd>106</paginationEnd><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0167-8655</issnPrint><issnElectronic/><keywords>Graph deep learning; Datacenter; Directed graph; Edge signals; Graph edge learning; Linegraphs; Directed linegraphs; Graph convolution</keywords><publishedDay>1</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-01-01</publishedDate><doi>10.1016/j.patrec.2021.12.003</doi><url/><notes/><college>COLLEGE NANME</college><department>Swansea Employability Academy</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SEA</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2022-01-12T13:04:39.7657616</lastEdited><Created>2021-12-16T18:13:15.4408851</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Michael</firstname><surname>Kenning</surname><order>1</order></author><author><firstname>Jingjing</firstname><surname>Deng</surname><order>2</order></author><author><firstname>Mike</firstname><surname>Edwards</surname><orcid>0000-0003-3367-969X</orcid><order>3</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>4</order></author></authors><documents><document><filename>59018__21998__10efaedbbd9c4b04afb00b3e5a44e6c9.pdf</filename><originalFilename>Final, No Publisher Formatting.pdf</originalFilename><uploaded>2022-01-04T11:56:59.2944543</uploaded><type>Output</type><contentLength>578644</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2022-12-08T00:00:00.0000000</embargoDate><documentNotes>©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-01-12T13:04:39.7657616 v2 59018 2021-12-16 A directed graph convolutional neural network for edge-structured signals in link-fault detection 3fcab7bac19385191914aa7e98b88e07 Michael Kenning Michael Kenning true false 6f6d01d585363d6dc1622640bb4fcb3f Jingjing Deng Jingjing Deng true false 684864a1ce01c3d774e83ed55e41770e 0000-0003-3367-969X Mike Edwards Mike Edwards true false b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 2021-12-16 SEA Journal Article Pattern Recognition Letters 153 100 106 Elsevier BV 0167-8655 Graph deep learning; Datacenter; Directed graph; Edge signals; Graph edge learning; Linegraphs; Directed linegraphs; Graph convolution 1 1 2022 2022-01-01 10.1016/j.patrec.2021.12.003 COLLEGE NANME Swansea Employability Academy COLLEGE CODE SEA Swansea University 2022-01-12T13:04:39.7657616 2021-12-16T18:13:15.4408851 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Michael Kenning 1 Jingjing Deng 2 Mike Edwards 0000-0003-3367-969X 3 Xianghua Xie 0000-0002-2701-8660 4 59018__21998__10efaedbbd9c4b04afb00b3e5a44e6c9.pdf Final, No Publisher Formatting.pdf 2022-01-04T11:56:59.2944543 Output 578644 application/pdf Accepted Manuscript true 2022-12-08T00:00:00.0000000 ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
A directed graph convolutional neural network for edge-structured signals in link-fault detection |
spellingShingle |
A directed graph convolutional neural network for edge-structured signals in link-fault detection Michael Kenning Jingjing Deng Mike Edwards Xianghua Xie |
title_short |
A directed graph convolutional neural network for edge-structured signals in link-fault detection |
title_full |
A directed graph convolutional neural network for edge-structured signals in link-fault detection |
title_fullStr |
A directed graph convolutional neural network for edge-structured signals in link-fault detection |
title_full_unstemmed |
A directed graph convolutional neural network for edge-structured signals in link-fault detection |
title_sort |
A directed graph convolutional neural network for edge-structured signals in link-fault detection |
author_id_str_mv |
3fcab7bac19385191914aa7e98b88e07 6f6d01d585363d6dc1622640bb4fcb3f 684864a1ce01c3d774e83ed55e41770e b334d40963c7a2f435f06d2c26c74e11 |
author_id_fullname_str_mv |
3fcab7bac19385191914aa7e98b88e07_***_Michael Kenning 6f6d01d585363d6dc1622640bb4fcb3f_***_Jingjing Deng 684864a1ce01c3d774e83ed55e41770e_***_Mike Edwards b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie |
author |
Michael Kenning Jingjing Deng Mike Edwards Xianghua Xie |
author2 |
Michael Kenning Jingjing Deng Mike Edwards Xianghua Xie |
format |
Journal article |
container_title |
Pattern Recognition Letters |
container_volume |
153 |
container_start_page |
100 |
publishDate |
2022 |
institution |
Swansea University |
issn |
0167-8655 |
doi_str_mv |
10.1016/j.patrec.2021.12.003 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
published_date |
2022-01-01T02:24:55Z |
_version_ |
1821370530910961664 |
score |
11.04748 |