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Abstract

Kipf and Welling [1] The growing interest in graph deep learning has
led to a surge of research focusing on learning various characteristics of
graph-structured data. Directed graphs have generally been treated as
incidental to definitions on the more general class of undirected graphs.
The implicit class imbalance in some graph problems also proves difficult
to tackle. Moreover, a body of work has begun to grow that considers
how to learn signals structured on the edges of graphs. In this paper,
we propose the directed graph convolutional neural network (DGCNN),
and describe a simple way to mitigate the inherent class imbalance in
graphs. The model is applied to edge-structured signals from datacenter
simulations using the structure of a directed linegraph to represent the
second-order structure of its underlying graph. We demonstrate that the
DGCNN’s improves over undirected models and other directed models by
applying our model to locating link-faults in a datacenter simulation.

1 Introduction

Until recently convolutional models were only suitable to Euclidean domains,
such as images or sound, because the convolution kernel and the structure of
such domains have a grid-like structure in common. Innovations over the last
decade have however permitted the extension of conventional deep learning to
non-FEucildean structures; graphs are among the more popular structures. The
convolution operation is redefined for graphs in two primary ways: spectrally
using spectral filters to approximate spatial convolution; and spatially, defined
analogously to conventional spatial convolution. Under certain conditions the
two are identical [1], but the spatial approaches exhibit the greatest variance of
definition. Graph deep learning has been successfully applied to a number of
domains. A graph can represent the atoms and chemical bonds of molecules,
for example—one of the earliest applications was for learning molecular finger-
prints [2]—but it has also been successfully applied to prediction on road-traffic
networks [3].



1.1 Deep Learning on Graphs

The first convolutional methods on graphs were spectral. Bruna et al. [4] pro-
posed implementing convolution on graphs as an filtering operation in the spec-
tral domain. As spectral decomposition is however computationally expensive
to compute, subsequent work sought to approximate it using Chebyshev poly-
nomials [1, 5] and Cayley polynomials [6]. Few spectral approaches exist in
the literature for directed graphs. Ma et al. [7] adapted spectral convolution to
directed graphs with Perron vectors; the formulation was simplified by Li et al.
[8] who also included both directions of the graph signals by using the in- and
out-degree matrices.

An alternative formulation is spatial convolution on graphs, analogous to
spatial convolution on Euclidean domains. Broadly speaking, for each vertex
of the graph, a set of vertices constituting its neighbors is aggregated and a
learned function is computed over all the signals. Owing to the variability of
vertex degree across the graph, the chief difficulty is choosing a way to bind
parameters to a neighborhood of signals. There is much variance among the
spatial approaches because of the different definitions of neighborhoods and the
different kinds of functions that can be applied to the neighborhoods’ signals.

To learn molecular fingerprints, Duvenaud et al. [2] applied a different func-
tion to each vertex neighborhood according to its degree. The process is re-
peated over multiple layers. Niepert et al.’s PATCHY-SAN [9] selects a subset
of vertices first by labeling the graph, then aggregates a constant number of
vertices and finally normalizes the selected vertices in some order to multiply
them by a set of parameters. MoNet [10] projects the graph vertices into a
pseudo-coordinate space where Gaussian distributions are learned, from which
the parameters of the model are sampled. GraphSAGE’s mean aggregator [11]
simply averages the signals of a target vertex and its first-order neighbors and
multiplies the result by a parameter matrix. Xu et al. [12] in contrast propose a
summation of the signals, passing the result through a multi-layer perceptron.
Velickovié¢ et al. [13] introduced attention to graph deep learning. An atten-
tion mechanism assigns every pair of vertices in a first-order neighborhood an
attention coefficient.

To the best of our knowledge, there are very few spatial approaches explic-
itly designed for directed graphs. The diffusion convolutional recurrent neural
network (DCRNN) [3] uses directed information to learn a diffusion matrix of
graph signals to model the spatial patterns in temporal data. Tong et al. [14]
proposed the Fusion model, a spatial approach to convolution that fuses three
components of proximity matrices. The first proximity matrix captures and
sums each vertices’ neighbors irrespective of direction. The second two proxim-
ity matrices capture vertices structurally similar to the target vertex according
to the existence of common in- or out-neighbors.

The processing of edge features on graphs is the subject of recent attention
[15]. Edge features are frequently used with graphs to describe quantitative
properties of edges, for example the bond-distance in molecular graphs [16].
Zheng et al. [17] used recurrent neural networks to model geographical in-flow



of COVID-19 infections, represented as graph edges. Chen et al. [18] constructed
a directed linegraph from an undirected underlying graph for the purposes of
community detection, where the edges features are a function of oriented pair-
wise vertex features.

1.2 Machine Learning and Datacenters

A datacenter’s network administrator faces numerous possible sources of failure.
At hand are the various streams of diagnostic information describing different
aspects of the network, no single stream providing a total description [19]. Di-
agostic aids can summarize data into understandable representations [20, 21].
There are software agents that monitor the health of traffic flows in a network,
such as PingMesh [22] and 007 [23], the latter 007 being particular interest in
the present work. Simple linear analysis of traffic flows has also been proposed
for the location of failures [24]. Some conventional machine learning approaches
have been applied in conjunction with diagnostic agents [25].

Deep learning approaches such as plain neural networks [26] and convolu-
tional neural networks [27] have also been applied to learning tasks on data-
centers. Yet although the datacenter’s structure is well represented by a graph,
seemingly few approaches exist in the literature that use them. Fang et al. [28]
modeled demand on a cellular network using a Graph Convolutional Network [1]
and long short-term memory. Wang et al. [29] predicted datacenter traffic with
the structure of a directed graph. Most relevant is Andreoletti et al.’s work [30];
they used the DCRNN ([3] to predict traffic loads on the links of a datacenter
availing the structure of a directed graph.

1.3 Contributions

In this paper we tackle the task of locating link-failures in a datacenter. Few ap-
proaches in the literature use graphs to provide structural information to models,
despite the recent surge of innovation. The machines and physical connections
of datacenters can be represented by vertices and directed edges, forming a di-
rected graphs Andreoletti et al. [30]. Unlike most situations, however, the data
in our problem is structured on the edges of the datacenter graph. While we
represent the datacenter as a directed graph, in distinction to earlier work, we
also construct a directed linegraph [31] in order to structure an link-wise learn-
ing task. Using this representation, we describe and evaluate a new model for
directed graphs. To the best of our knowledge, our paper is the first to propose
the construction of a directed linegraph and the first to use its structure to learn
on edge-structure signals to locate faults. Additionally we believe that we are
the first to discuss the attendant issues of what we call inverse edges. Addition-
ally we propose a new technique to counteract the inherent class imbalance in
the graph, which cannot be remedied by simply oversampling.
Our contributions are as follows:

e we present the directed graph convolutional neural network (DGCNN), a
new model for learning on directed graphs,



e we use a directed linegraph to learn a task on the edges of a graph, while
describing ways to tackle inverse edges, a unique problem that arises from
the use of directed linegraphs in this context; and

e we present a technique to mitigate the inherent class imbalance in the
graph, by using a domain-motivated threshold to exclude vertex-wise
losses from the training, and use a vertex-wise odds-ratio weighting to
scale the losses of the remainder.

2 Methodology

2.1 Graph-theoretical Definitions

A graph G = (V| E) is defined by a set of vertices V and edges E. The order
of the graph is n = |V, the number of vertices, and its size is the number of
edges m = |E|. If two vertices z,y € V are joined by an edge zy € E, they
are called adjacent. The vertices x,y are referred to as end-vertices of xy. (For
simplicity’s sake we also write z,y € G and zy € G respectively.) The set E
is hence a subset of all unordered pairs of V. If the edges in E are ordered,
the graph and its edges are described as directed. The directed edge xy has a
start-vertex x and end-vertex y, and xy # yx.

The neighborhood of a target vertex x, denoted I'(x), is the set of ver-
tices incident to z: I'(z) = {y | xy € E}. The vertex x is sometimes implic-
itly included in I'(z) as a self-loop. A vertex z’s degree d(z) is its neighbor-
hood’s cardinality d(z) = |I'(z)| if only the first-order neighbors are included
by T'(z). The kth order neighborhood is denoted by T'y(z). A neighborhood
of a directed graph is factored into its in-neighbors I' (z) = {y | yz € E}
and out-neighbors I', (x) = {y | zy € E}. Vertex degree is likewise factored:
d_(2) = |0 _(2)] and d, (z) = T, ()]

Aspects of the graph can be represented as matrices indexed by the vertices.
The adjacency matrix A € R™*" is a binary matrix where Vzy € G, A,y = 1.
The degree matrix D = diag(A1) is a diagonal matrix where D, = d(z). The
adjacency matrix of a directed graph is asymmetric, from which we obtain a
negative degree matrix D_ = diag(A T1) for the in-degrees, and the positive
degree matrix D, = diag(A1) for the out-degrees.

The linegraph L(G) = (V, Ey,) is constructed from an underlying graph G,
such that each edge zy € G is represented by a vertex a € V. Two vertices
a, f € L(G) are adjacent if the underlying edges are also adjacent, meaning they
have at least one end-vertex in common. Otherwise, the same notation as graphs
applies to linegraphs. The directed linegraph is constructed similarly, except the
vertices are joined only when their direction is coincident [31]. That is, there is
a directed edge o € L(QG) if there are two edges zy,wz € G,a,8 € L(G)
such that ry = o, wz = B,y = w. If both x = z and y = w, then we term the
two edges inverse edges of one another. The linegraph may be said to represent
the second-order or edge structure of G.



Graph signals are frequently structured on the vertices of the graph, but
can also be structured on the edges [15]. For generality, the graph-structured
signals are formulated as a mapping from the graph to the c-dimensional sig-
nals f : G — RFX¢ where k can be n or m. The graph signals are therefore
denoted f(G), f(V) or f(E), or simply f. We use f(z) € R® to represent the
c-dimensional signal on vertex x.

2.2 Representing a Datacenter as a Graph

A graph can represent a datacenter if we assign each machine a vertex in the
graph and draw an edge between a vertex pair when the two machines they
represent are connected physically. The connections are directed; each pair of
machines has two connections, one upstream, one downstream. Directed edges
can represent the separate, directed connections, yielding a directed graph.

As mentioned above, graph convolution is more often defined on graph ver-
tices. The diagnostic data from the 007 simulator (Section 3.1) is not structured
on the vertices, however, but on the edges. We use a linegraph (Section 2.1)
to represent the links as vertices. Specifically we construct a directed linegraph
[31] from the underlying directed graph.

However, there is a problem arising from the nature of the underlying graph.
For each connection from machine A to B, there is an inverse connection from
B to A, and wvice versa. We refer to both edges as the inverse edges of one
another. A special consideration thus arises in the construction of the directed
linegraph. The inverse edges become a pair of vertices in the directed linegraph,
and strictly speaking, the two edges (now vertices) would be connected and
become the in- and out-neighbors of one another (Section 2.1). Modeling the
inverse edges as a member of both groups would be double counting however.
A decision must therefore be made on how it is handled, most appropriately
by reference to the domain. Traffic passing along an edge in the datacenter
is unlikely to pass through its inverse. On these ground the two inverse edges
could remained disconnected. We test including and excluding the inverse edge
in this paper.

One disadvantage of linegraphs should be mentioned, noted elsewhere [15].
The linegraph’s order is the size of its underlying graph. The linegraph’s size
increases at a greater rate. Were the graph to become too large, the linegraph
could become unmanageable if it does not remain sparse.

2.3 The Directed Graph Spatial Convolution

A spatial convolution on the graph is a localized function over the signals of
a vertex and its neighbors. The function’s form between methods is highly
variable. One spatially defined function is GraphSAGE’s mean aggregator [11]:

fi(z) = FEES] ye{g;r(i(y)7 (1)



where 6 € R€ is the set of learned parameters.

Methods defined in such away do not account for the direction of signals
in the graph. We propose the directed graph convolutional neural network
(DGCNN) to explicitly account for the direction of neighbors:

Zf

yEF (z)

f(x) > )+ 02f (), (2)

y€ely(z)
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where 6y, 61,0> € R° are the sets of learned parameters for the in- and out-
neighbors and target vertex respectively. Defined over all vertices and multiple
output channels, the equation is simplified to

f =ATf0y+AfO, + fO,, (3)

where A is the row-normalized adjacency matrix and Qg, O, @y € R°*? are the
sets of learned parameters, where d is the output’s dimensionality.

In cases where there are inverse edges in the directed graph, they can be
included in each neighborhood as undifferentiated members; or as a separately
learned term:

f'=ATf0,+AfO, + fO, + BfOs, (4)

where B € R"*™ is a mask indexing the inverse edges in A.

2.4 The DGCNN Architecture

In this section we describe the structure of the directed graph convolutional
neural network (DGCNN) model, illustrated in Fig. 1. The input is passed
through three sets of DGCNN layer, batch normalization and activation layer.
The output is passed through a dense layer that maps each vertex’s signals
to a single sigmoid-activated output, the model’s prediction. We decided on 3
convolutional layers and 10 output maps for each layer following experimenta-
tion: after 3 convolutional layers the performance improvement petered out. We
found that batch normalization with a momentum of 0.99 stabilized learning.
We used LeakyReLU rather than ReLLU as an activation functions, since the
latter led to dead neurons. The model handles the class imbalance by specially
weighting the loss-function and biasing the last dense layer.

3 Experiment

The experiments below were programmed in Python 3.6.6. The models were
trained in Python Tensorflow 2.4.1. The GraphSAGE model is the Spektral
1.0.4 implementation.

3.1 The Dataset

The dataset is generated by the 007 simulator developed by Arzani et al. [23].
The diagnostic system uses agents to record the paths of transmission errors to
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Figure 1: The structure of the DGCNN, where BN and ¢ acronymize the batch
normalization layer and activation functions respectively. In the comparison
models we have replaced only the convolutional layer given here.

locate the link faults responsible for the packet-drops, and assigns potentially
culpable links a blame-score. The simulator uses a FAT topology for the dat-
acenter, which we configured to have 10 T2 switches and two pods of 10 T1
switches and 10 top-of-rack (ToR) switches, each connecting to 24 Hosts, giving
540 machines and 1,440 links. We are not interested in the Host links since
faults there can be trivially diagnosed. Rather we are interested in the type-1
(T1-ToR), type-2 (ToR-T1), type-3 (T1-T2) and type-4 (T2-T1) links.

In total we ran 2880 simulations, each thirty seconds long, representing 24
hours’ worth of datacenter simulation data. At the end of each simulation, each
link is assigned a blame-score, the model input. For each simulation between two
and ten links are chosen to be faulty. The rate at which these faulty links would
drop was decided by which of the four link-types it belonged to. The packet-drop
probabilities of each link-type were sampled from the range [0.01,0.1]. In order
to add noise to the problem and render it more challenging, healthy links would
occasionally cause packet-drops but at a much lower rate of 0.000001, which one
would expect in a datacenter, as Arzani et al. observed. The difference in the
ranges of the probabilities seems vast, but the faulty links cause wide-ranging
collateral failures owing to the displacement of traffic. It is therefore difficult to
identify the efficient cause of the collateral failures.

There is a high inherent degree of class imbalance in the dataset that is very
difficult to remedy. The datacenter has 1,440 links and a number of failures & is
uniformly distributed k& ~ U (2,10) with an expectation E(k) = 2 + 10-2/2 = 6.
The expected class imbalance is therefore p = E(k)/1,440-E(k) = 4.18 x 1073,
It is imperative that we address this fact in training to mitigate against the
model’s skewing towards the negative samples. We describe how we address the
imbalance in Section 3.3.



Table 1: The models we are evaluating in the experiments.

. Inverse Excluding
Name Type Directed edges  neighbors
DGCNN Spatial v’ —
DGCNN-R Spatial v’ - —
DGCNN/I Spatial v’ v’ —
DGCNN-out  Spatial v’ — v’
DGCNN-in Spatial v’ v’
UGCNN Spatial — — —
UGCNN/I Spatial — v’ —
UGCNN+I Spatial — v’ —
GraphSAGE Spatial — — —
P-F model Spectral v’ - —
Fusion model  Spatial v’ — —

Dense model

RF




3.2 Implementation and Comparisons

We compare the DGCNN with several modifications and other models (Table 1).
In each case we replace only the convolutional layers of the model illustrated in
Fig. 1. The UGCNN models use the same convolutional layer as the DGCNNS;
the only difference is that the adjacency matrix is made symmetric:

i — (5)

r 1, ifAijzlor Ajiil,
0, otherwise.

In the analysis, we use the differences in structure to elucidate how each aspect
informs the model; but we are primarily concerned with performance of the
DGCNN.

The variations are meant to evaluate empirically several decisions we have
made. The residual connections in the DGCNN-R counteract any oversmooth-
ing of the signal over the three layers that may undermine the model’s perfor-
mance [32]. The input of each layer is added to the layer’s activated output. If
the dimensionality of the two tensors differs, the signals are projected using a
learned matrix. Hence, an input h_, € R"*¢ to layer ¢ is added to its output
h; € R"*4 as hl = h!_; W +h; where W € R®*? is a learned set of parameters.

We evaluated how the models performed with and without inverse edges.
The inverse edges are modeled in DGCNN/I and UGCNN/T as a separate
term of the convolution. In a further undirected variant, UGCNN+I, the
inverse can be included in the vertices’ neighborhoods. If the inverse edges
are not relevant to the task on each vertex, inverse edges’ signals’ inclusion
would not help the performance. Adding the inverse edge to a directed and
undirected model moreover enables us to compare the study whether the inverse
edge provides additional directed information indirectly. The inverse edge’s
existence depends on directionality in the graph. We speculate that it may
therefore contain some discriminative information. We also experiment with the
exclusion of whole sets of neighbors according to their incidence. DGCNN-in
uses only the in-neighbors and DGCNN-out uses only the out-neighbors.

GraphSAGE [11] is an undirected spatial technique in the literature against
which we compare our models, and the P-F model [8] and Fusion [14] models
are respectively spectral and spatial directed approaches in the literature. A
directed spectral approach would not fare well in locating several overlapping
independent faults at the same time, because the transformation and spectral
filtering would have to operate on the graph signals globally to find several in-
dependent, localized signals that have no spatial correlation. The dense model’s
performance tells us how the graph structure informs a model’s solution, and
the RF indicates how deep models compare to a conventional model.

3.3 Experimental Conditions

The training procedure is kept alike between the deeply learned models; the
only aspect that varies is the architecture. Each model is trained for 50 epochs.



The training rate is initially 0.1 and annealed to 1 x 107 during training using
cosine decay.

The loss-function is the binary cross-entropy of the model output and the
ground-truth. However, as mentioned in Section 3.1, there is a high class im-
balance that we must address. We have modified the loss-function in three
ways to mitigate its deleterious effect on learning. Firstly we find the lowest
blame-score of the positive samples. This score acts as a threshold on the cross-
entropy losses. Namely we discount the loss of samples whose input falls below
the threshold. The risk is that the model learns to ignore all samples below the
threshold, hence a few below-threshold samples in the test data may be ignored.

Secondly, the loss on each vertex was weighted by the balanced odds-ratio
of positive/faulty and negative/healthy links. The weight of a positive/faulty
link is (neg+pos)/2.pos, and (reg+pos)/2.neq for a negative/healthy link, where pos
and neg are the numbers of positive and negative samples above the threshold.

Thirdly, we set the bias of the final layer such that the model output reflect
the prior distribution of positive samples. The log-ratio of positive to nega-
tive samples was computed b = In(Pos/negioa), Where negiotar is the number
of negative samples ignoring the threshold. The sigmoid layer therefore gives
U(b) = pos/(P05+”egcotal)-

These conditions largely cannot apply to the RF. The RF uses 100 estima-
tors, each estimator is constructed on a subsampling as large as 10% of the
dataset. The classes are balanced according to their proportions in each set of
bootstrapping samples, using a built-in parameter that balances the bootstrap
samples of each estimator.

3.4 Metrics and Analyses

We compared the models’ performances on the test sets across four measures:
precision, recall, Fi-score, and McNemar’s test. The predictions of two models
can be compared directly using McNemar’s test [33]. We use Edwards’ cor-
rection [34]. First we compute two values: n,¢, which compares how many
times the first model is right and the second model is wrong and wvice versa
nfs. These numbers are additionally interesting in themselves, as they reveal to
us the relative strengths of the models. McNemar’s test statistic is computed
as X% = (Insf — ngs| — 1)%/(nss + ngs). The value x? is approximated by a
chi-squared distribution. We can therefore use a binomial test to evaluate the
null hypothesis, that the performances of the two models are equal.

We compare the models with six further analyses. The first five concern
the architectural features of the models exhibited by the comparison models
(Table 1). Firstly we compare the neural-network models to a conventional
machine-learning model to determine whether the task is helped by deeply
learned models. Secondly we measure the benefit of including direction in our
model by comparing our directed model to the undirected variants. Thirdly
we measure the effect of excluding a whole set of neighbors—the in- or out-
neighbors—from the convolution. Fourthly we measure the effect of including
the inverse edge’s signal on the efficacy of the directed and undirected models.
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Table 2: The reference model for the McNemar’s tests is the directed model
with the residual connections because it had the best performance by F}-score.
The parameter counts of each model are given for the perspective they give on
capacity, training and inference times, etc.

Model No. Params. Fy-score Precision Recall Nyf X p-value
Directed model 731 0.77985 % 0.007 87 0.72250 £ 0.014 07 0.848 53 + 0.036 82 0.0 0.0 0.00000
Directed model with residual connection 941 0.77761 £0.01215 0.72577 £ 0.012 37 0.83921 £ 0.045 52 418.0 416 1.01  0.40969
Directed model including the inverse 941 0.776 28 £ 0.010 21 0.72381 £ 0.014 09 0.838 70 £ 0.04299 530.8 0.57  0.51480
Directed model, out-neighbors only 521 0.71514 £ 0.051 62 0.667 50 £ 0.072 96 0.778 80 £ 0.081 51 1139.6 175.28  0.00000
Directed model, in-neighbors only 521 0.741 34 £0.03282 0.708 36 £ 0.041 89 0.79203 £0.11719 789.0 40.10  0.00000
Undirected model 731 0.776 75 + 0.016 45 0.716 55 £ 0.032 39 0.855 14 + 0.079 76 549.2 2.30  0.31816
Undirected model including the inverse 941 0.76341 £ 0.01571 0.73282 £ 0.024 56 0.800 67 £ 0.063 26 667.4 3.30  0.28927
Undirected model with merged inverse 731 0.745 35 £ 0.063 47 0.676 50 £ 0.093 06 0.84210 £ 0.07511 883.6 177.17  0.19262
GraphSAGE model 521 0.70562 £ 0.07261 0.613 86 £ 0.103 34 0.83998 £ 0.01248 467.21  0.16386

Perron-Frobenius model 521 0.118 00 £ 0.054 97 0.066 62 £ 0.034 98 0.597 47 £ 0.044 98 34123.6 32091.83  0.00000
Spatial directed fusion model 1243 0.11580 £ 0.076 09 0.06543 £ 0.048 22 0.63700 £ 0.08147 40394.0 37980.77  0.00000
Dense model 311 0.743 03 £ 0.006 03 0.640 16 £ 0.005 32 0.88539 + 0.011 67 975.6 144.34  0.00000
Random forest 100 0.736 98 £ 0.004 63 0.639 52 + 0.005 76 0.869 54 £ 0.007 41 1043.0 151.24  0.00000

Finally we compare our directed model with the three graph models from the
literature: the GraphSAGE model, the Perron-Frobenius spectral model and
the Fusion model.

4 Results

Generally the directed spatial models attain a better balance of precision and
recall (Table 2). It is clear that the graph structure informs the model when
compared with its absence, as in the Dense model and RF. There is also a clear
trade-off between precision and recall. Wherever a model’s precision is better
than the DGCNNSs’, that model suffers a worse recall, such as the undirected
model. The opposite is observed with the dense model.

With respect to the parameter counts, the picture is not complicated, but our
interpretations can be supplemented with reference to McNemar’s test. More
parameters can increase the capacity of models, but it is not a straightforward
relationship [35]. Certainly it takes more computational power.

A subtle yet notable aspect of McNemar’s test statistics is the size of ngy
and ny, across the models compared to the reference model. The chief differ-
ence between these numbers lies in samples that the directed model correctly
identifies but the others do not. The two numbers are frequently of the same
magnitude or within an order of it, ignoring the P-F model and Fusion model.
This concerns not samples that neither model can correctly identify, rather sam-
ples that are mutually exclusive. In other words, it seems that if a model is to
correctly identify one set of samples, it cannot correctly identify another set. It
suggests that the task might be well learned by an ensemble approach.

Conventional machine learning versus deep learning By Fj-score the
RF is outperformed by all deep models, with the exception of the literature
models, GraphSAGE, P-F model and Fusion model. While the RF has the
second-highest recall, the precision falls below the performance of even the dense
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model. The deeply learned models offer a clear advantage over conventional
machine learning in this scenario.

Directed versus undirected deeply learned models The DGCNN and
DGCNN-R outperform the variants of the UGCNNs by Fj-score. Whereas
the recall of the UGCNNSs is higher than the DGCNN and DGCNN-R’s, the
precision is poorer. The directed models were however more stable than the
undirected models. The difference in precision between the DGCNN and the
UGCNN is nearly six percentage points, and the DGCNN-R widens the differ-
ence further to ten percentage points.

One must note that the undirected model’s architecture is identical to the
directed models’; the only difference lies with the adjacency matrix, as we de-
scribed in Section 3.2. We may therefore confidently attribute the improvement
of performance to the direction included in the model, although the difference
between the best directed model and the best undirected model is not statisti-
cally significant.

Excluding neighbors Excluding neighbors of the DGCNN-in and DGCNN-
out markedly undermined their performance. Excluding the out-neighbors in
DGCNN-out appears to be more deleterious than excluding the in-neighbors in
DGCNN-in, which suggests that the in-neighbors’ signals may be marginally
more informative than the out-neighbors’. This fact is perhaps owed to the
strain effected on links earlier in the traffic flow rather than later. Their Fj-
scores are not even better than the dense model’s, which has no structural
inductive biases at all.

Inverse edges The advantage that the inverse signals gives to a model is
not clear. The DGCNN/T performed worse than the DGCNN, and likewise the
UGCNN/T and UGCNN+I performed worse than the UGCNN. The UGCNN/I
improves minimally on the UGCNN’s stability. The results suggest that the
undirected models are hitting an upper limit on performance. Directed informa-
tion does not appear to be supplied to the model indirectly via the inverse edge.
That the UGCNN+I performs worse than the UGCNN moreover suggests that
the information on the inverse edge is not just useless, but muddies the interpre-
tation of the more informative neighborhood signals. Curiously the DGCNN/I
exhibited an inconsiderable improvement of stability over the DGCNN.

Spatial and spectral graph-based approaches in the literature Com-
paring our directed models to the models in the literature, it is clear that the
two directed models, P-F model and Fusion model, perform badly. On the one
hand, we believe that it is clear that the spectral direct model, P-F model, is not
suitable to the task at hand, where we must detect several uncorrelated signals
in the same input space. On the other hand, we consider the Fusion model’s
design to be responsible for the poor performance. The first-order neighbors in
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the convolution are convolved irrespective of the direction of their incidence to
each vertex. We believe that this weakens the capacity of the model.

GraphSAGE in contrast performs far better, though still not as well as the
UGCNNSs, which has the most comparable architecture. It has fewer parameters
than the DGCNN and UGCNN, but it is doubtful that this alone accounts
for the difference in performance between the two. The explanation is better
explained by the way GraphSAGE levels the distinction between the target
vertex and its neighbors, whereas the DGCNN and UGCNN model the neighbors
separately. A similar smoothing effect occurs in the UGCNN+I. Overall it
appears that GraphSAGE and the undirected approaches are limited in their
performance.

Performance stability over link-types and failures in simulation The
performance of the models as measured by the Fj-score varies very little with
respect to the number of failures in a simulation (Fig. 2a). This is unsurprising,
as the number varies only from 2 to 10 throughout the simulations. With respect
to the different link-types, however, the difference in performance within models
is stark (Fig. 2b). Further analysis shows that the models struggled to identify
the type-3 and type-4 faults, the links that resided furthest from the hosts. We
suspect that a low number of in-neighbors and out-neighbors of these links is
responsible: type-3 links have 11 in-neighbors and 1 out-neighbor; type-4 links
have 1 in-neighbor and 11 out-neighbors. Whereas type-1 links have 11 in-
neighbors and 33 out-neighbors (type-2 contrariwise). Sufficient information for
the type-3 and type-4 links might be lacking to draw conclusions about faults.

5 Conclusion

In this paper, we presented the directed graph convolutional neural network
(DGCNN). Few models have been explicitly presented in recent years to operate
on directed graphs. The DGCNN aggregates the signals of the in- and out-
neighbors separately. We also propose using a directed linegraph to learn on
domains that are ordinarily represented as directed graphs but whose signals
occur on its directed edges. The directed linegraph leads to another issue,
the inverse edge, which we propose to handle by including it in our definition
of convolution. Additionally we proposed a way of mitigating the inherent
class imbalance in the graph. With the convolution defined, we evaluated the
performance of our model against variants and models found in the literature.
We found that the DGCNN outperforms the other models we tested, indicating
that including the direction improves a model’s capacity to learn. The DGCNN
offers a new formulation of modeling of domains represented as directed graphs.
Unlike previous work, we account for direction when learning directed signals,
especially edge-structured signals.
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Figure 2: For (a) for each model on each fold we grouped the simulations by the
number of failures and computed the Fj-scores. For (b) for each model on each
fold we masked for each edge type and then computed the Fj-scores. In both
cases we average the scores across the folds. The box-plot shows the average,
first standard deviation and 25th and 75th percentiles of those Fj-scores across
the folds. Circles are outlier samples.
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