Journal article 661 views 148 downloads
Well-Posedness for Stochastic Fractional Navier–Stokes Equation in the Critical Fourier–Besov Space
Journal of Theoretical Probability, Volume: 35, Issue: 4
Swansea University Author: Jiang-lun Wu
-
PDF | Version of Record
© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License
Download (343.11KB)
DOI (Published version): 10.1007/s10959-021-01152-y
Abstract
This paper concerns the three-dimensional multiplicative stochastic fractional Navier-Stokesequation. Using Fourier localization technique, we establish the local existence and uniqueness of the solutions in the critical Fourier-Besov space $\mathcal{\dot{B}}^{4-2\alpha-\frac{3}{p}}_{p,r}$. Moreover...
Published in: | Journal of Theoretical Probability |
---|---|
ISSN: | 0894-9840 1572-9230 |
Published: |
Springer Science and Business Media LLC
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa58983 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2021-12-09T12:49:23Z |
---|---|
last_indexed |
2023-01-11T14:39:56Z |
id |
cronfa58983 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-01-05T13:54:46.5334213</datestamp><bib-version>v2</bib-version><id>58983</id><entry>2021-12-09</entry><title>Well-Posedness for Stochastic Fractional Navier–Stokes Equation in the Critical Fourier–Besov Space</title><swanseaauthors><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><ORCID>0000-0003-4568-7013</ORCID><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-12-09</date><deptcode>SMA</deptcode><abstract>This paper concerns the three-dimensional multiplicative stochastic fractional Navier-Stokesequation. Using Fourier localization technique, we establish the local existence and uniqueness of the solutions in the critical Fourier-Besov space $\mathcal{\dot{B}}^{4-2\alpha-\frac{3}{p}}_{p,r}$. Moreover, when the initial date is sufficiently small, we obtain the global existence of the solutions in probability.</abstract><type>Journal Article</type><journal>Journal of Theoretical Probability</journal><volume>35</volume><journalNumber>4</journalNumber><paginationStart/><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0894-9840</issnPrint><issnElectronic>1572-9230</issnElectronic><keywords>stochastic fractional Navier-Stokes equation; Fourier-Besov space; strong solution.</keywords><publishedDay>1</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-12-01</publishedDate><doi>10.1007/s10959-021-01152-y</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SMA</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>Natural Science Foundation of China (Nos.11901005 and 12071003) and the Natural Science Foundation of Anhui Province (No. 2008085QA20)</funders><projectreference/><lastEdited>2023-01-05T13:54:46.5334213</lastEdited><Created>2021-12-09T12:42:24.6899782</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Xiuwei</firstname><surname>Yin</surname><order>1</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><orcid>0000-0003-4568-7013</orcid><order>2</order></author><author><firstname>Guangjun</firstname><surname>Shen</surname><order>3</order></author></authors><documents><document><filename>58983__22316__79062d53998841cfa0b5fcb2d83fd083.pdf</filename><originalFilename>58983.pdf</originalFilename><uploaded>2022-02-07T16:24:37.3231543</uploaded><type>Output</type><contentLength>351349</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2023-01-05T13:54:46.5334213 v2 58983 2021-12-09 Well-Posedness for Stochastic Fractional Navier–Stokes Equation in the Critical Fourier–Besov Space dbd67e30d59b0f32592b15b5705af885 0000-0003-4568-7013 Jiang-lun Wu Jiang-lun Wu true false 2021-12-09 SMA This paper concerns the three-dimensional multiplicative stochastic fractional Navier-Stokesequation. Using Fourier localization technique, we establish the local existence and uniqueness of the solutions in the critical Fourier-Besov space $\mathcal{\dot{B}}^{4-2\alpha-\frac{3}{p}}_{p,r}$. Moreover, when the initial date is sufficiently small, we obtain the global existence of the solutions in probability. Journal Article Journal of Theoretical Probability 35 4 Springer Science and Business Media LLC 0894-9840 1572-9230 stochastic fractional Navier-Stokes equation; Fourier-Besov space; strong solution. 1 12 2022 2022-12-01 10.1007/s10959-021-01152-y COLLEGE NANME Mathematics COLLEGE CODE SMA Swansea University SU Library paid the OA fee (TA Institutional Deal) Natural Science Foundation of China (Nos.11901005 and 12071003) and the Natural Science Foundation of Anhui Province (No. 2008085QA20) 2023-01-05T13:54:46.5334213 2021-12-09T12:42:24.6899782 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Xiuwei Yin 1 Jiang-lun Wu 0000-0003-4568-7013 2 Guangjun Shen 3 58983__22316__79062d53998841cfa0b5fcb2d83fd083.pdf 58983.pdf 2022-02-07T16:24:37.3231543 Output 351349 application/pdf Version of Record true © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Well-Posedness for Stochastic Fractional Navier–Stokes Equation in the Critical Fourier–Besov Space |
spellingShingle |
Well-Posedness for Stochastic Fractional Navier–Stokes Equation in the Critical Fourier–Besov Space Jiang-lun Wu |
title_short |
Well-Posedness for Stochastic Fractional Navier–Stokes Equation in the Critical Fourier–Besov Space |
title_full |
Well-Posedness for Stochastic Fractional Navier–Stokes Equation in the Critical Fourier–Besov Space |
title_fullStr |
Well-Posedness for Stochastic Fractional Navier–Stokes Equation in the Critical Fourier–Besov Space |
title_full_unstemmed |
Well-Posedness for Stochastic Fractional Navier–Stokes Equation in the Critical Fourier–Besov Space |
title_sort |
Well-Posedness for Stochastic Fractional Navier–Stokes Equation in the Critical Fourier–Besov Space |
author_id_str_mv |
dbd67e30d59b0f32592b15b5705af885 |
author_id_fullname_str_mv |
dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu |
author |
Jiang-lun Wu |
author2 |
Xiuwei Yin Jiang-lun Wu Guangjun Shen |
format |
Journal article |
container_title |
Journal of Theoretical Probability |
container_volume |
35 |
container_issue |
4 |
publishDate |
2022 |
institution |
Swansea University |
issn |
0894-9840 1572-9230 |
doi_str_mv |
10.1007/s10959-021-01152-y |
publisher |
Springer Science and Business Media LLC |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
This paper concerns the three-dimensional multiplicative stochastic fractional Navier-Stokesequation. Using Fourier localization technique, we establish the local existence and uniqueness of the solutions in the critical Fourier-Besov space $\mathcal{\dot{B}}^{4-2\alpha-\frac{3}{p}}_{p,r}$. Moreover, when the initial date is sufficiently small, we obtain the global existence of the solutions in probability. |
published_date |
2022-12-01T04:15:56Z |
_version_ |
1763754069437972480 |
score |
11.037253 |