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Abstract

The well-posedness of stochastic Navier—Stokes equations with various noises is a
hot topic in the area of stochastic partial differential equations. Recently, the con-
sideration of stochastic Navier—Stokes equations involving fractional Laplacian has
received more and more attention. Due to the scaling-invariant property of the frac-
tional stochastic equations concerned, it is natural and also very important to study the
well-posedness of stochastic fractional Navier—Stokes equations in the associated crit-
ical Fourier—Besov spaces. In this paper, we are concerned with the three-dimensional
stochastic fractional Navier—Stokes equation driven by multiplicative noise. We aim
to establish the well-posedness of solutions of the concerned equation. To this end, by
utilising the Fourier localisation technique, we first establish the local existence and

4203
uniqueness of the solutions in the critical Fourier-Besov space 5, , . Then, under
the condition that the initial date is sufficiently small, we show the global existence of
the solutions in the probabilistic sense.
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1 Introduction

In this paper, we are concerned with the following three-dimensional stochastic incom-
pressible fractional Navier—Stokes equation

du+[(=A)*u+u-Vu+Vrldt =3 ;. g, u)dBy, t>0
divu = 0, (1.1)
u(0) = uo,

for unknown random field u = (uy, us, u3) € R3 representing the velocity of a fluid,
where 7 stands for the pressure and the fractional Laplace operator (—A)*, o« € (0, 1]
is the Fourier multiplier with symbol |£|2%, gx, k > 1 are jointly measurable coeffi-
cients, { Bx, k > 1} is a sequence of one-dimensional independent Brownian motions
defined in a given completed filtered probability space (2, F, F;, P) (see e.g. [9]).
When o = 1, the equation (1.1) becomes the well-known stochastic Navier—Stokes
equation (SNS in short). The SNS has been intensively studied due to its feature
simulation for fluid flow dynamics. Especially, Holz and Ziane [8] obtained the
local well-posedness of the strong solution for the multiplicative SNS in bounded
domains when the initial data are in H!. Sritharan and Sundar [13] established
Wentzell-Freidlin-type large deviation principle for the two-dimensional SNS with
multiplicative Gaussian noise. Caraballo, Langa and Taniguchi [2] proved that the
weak solutions for the two-dimensional SNS converge exponentially in the mean
square and almost surely exponentially to the stationary solutions. Xu and Zhang
[18] discussed the small time asymptotics of two-dimensional SNS in the state space
C([0, T'], H). Recently, the study of well-posedness for the SNS in Besov spaces has

attracted the interest of many scholars. In particular. Du and Zhang [6] obtained local
4_

and global existence of strong solutions for the SNS in the critical Besov space B o -
Chang and Yang [3] studied the initial-boundary value problem of the SNS in the half
space.

If g := {gr, k = 1} = 0, the system (1.1) reduces to incompressible fractional
Navier—Stokes equations (FNS in short). It is scaling invariant under certain changes
of spatial and temporal variables. To be more precise, one has the following

w (1, x) = A7 (2%, ax), o, x) = A2 o, A2,

This scaling invariant property naturally leads to the definition of the critical space
for the equation (1.1). Recall that a functional space X endowed with norm || - ||x is
critical for the equation (1.1) if it satisfies ||@y || x = [l@|lx, where ¢;, (x) = A2* Lo (x).
To date, the well-posedness for FNS has been studied by many scholars in different

critical spaces. For example, Wu [17] studied the well-posedness for FNS in the Besov
3

L2043

space B, , T , Wang and Wu [15] proved the global well-posedness of mild solution
and Gevrey class regularity for FNS in the Lei Lin space x ' 2%, Ru and Abidin [12]
discussed the global well-posedness for FNS in the variable exponent Fourier—Besov
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spaces B (.)O; ©just mention a few. More discussions on the global well-posedness
can be found in [4,10] (and references therein).

Motivated by the above investigations, in this paper, we want to study the well-
3

A—
posedness of the equation (1.1) in the critical Fourier-Besov space B, , ¢ P, aiming
to extend the well-posedness results of [12,16]. To this end, we first derive the local

3
well-posedness for the equation (1.1) in the space B:,za ” . Then for sufficiently
small initial data, we show that the solution is global in the probabilistic sense.

The rest of the paper is organised as follows. In Section 2, we briefly recall some
harmonic analysis tools including the Littlewood-Paley theory and the definition of
the Fourier—Besov space. Section 3 is devoted to establishing our main well-posedness
results.

2 Preliminaries

In this section, we recall the homogeneous Littlewood-Paley decomposition and the
definition of Fourier—Besov spaces. For more details, the reader is referred to [1].

Let S(RY), d > 1, be the Schwarz space of all smooth functions that are rapidly
decreasing infinite functions along with all partial derivatives and S’ (R¢) be the space
of tempered distributions. Let the dual pairing between S(R?) and S’(R¢) be denoted
by (-, -). Forany f € S(R?), the Fourier transform and the inverse Fourier transform
of f are defined, respectively, by

F(HE) = fE) =

1 ix-&
7| e fdx,
R4

(2m)2

v 1 ,
FUNE = o0 = —— [ e pen
@n)¥ Jri

Furthermore, for any ¢ € S’(R?), we define its Fourier transform and inverse Fourier
transform as

(6, )= (b 1), (@, )=, f), ¥ [ e SR,
LetC := {S eR?: % <&l < %} and D(C) be the space of all test functions on C,

that is, the totality of all smooth functions on C that have compact support. Then there
exists a non-negative radial function ¢ € D(C), such that

Y i) =1, V& e RI\(0},

JEZ

where ¢;(§) = ©(277£). The homogeneous dyadic blocks is defined in the following
manner

Ajbt::(/v)j*u, Jj €.
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We further set the quotient space S, RY) := &' (R?) /P, where P is the space of all
polynomials. For any u € S, (R?), we define

S’ju = Z Aj/u.
J'=j-1
We have

Definition1 Let 1 < p,r < oo,s € R, the homogeneous Fourier—Besov space is
defined as

B;,r = [M (S S;/,(Rd) : ”u“B;;r = {ZJYHA]uHLg}l; < OO}

Taking the time variable and random variables into account, we also need the following
definition of Chemin-Lerner-type spaces, see, [1,16].

Definition2 Let1 < p,q,r,0 <0co,s € R, T > 0, we define
LIB, = {u : Vae.t €[0T, ult,) € SR,

. o Jjs /\ .

lullgg s, = {214 ullg,0), < oof:

LILoB,, = {u Vae (0.1) € 2% [0, T], uw,1,-) € SR,

. o JSIA . .
”“”LM;;B;J = {2 ||AJ”||L‘;L5L§}1; < oo},

chroly,, =1 = k=1 Yh= 1, fie LLLIB;,.

—

.  [DISA .
Iy cops,, = {2 “Ajfk||L‘§Lgl,fL§}1; < oo].

We list here some of the properties that will be used in the sequel. Letu, v € S, (RY),
then

o |k—j| 22=>@kA‘ju=Q;

o [k—jl=5= Aj(Sk—1uliv) =0.

e For1<p,r<oo, s<0,itholds thatu Bl‘,r if and only if {2/° ”S/];”Li }1; < —400.
Finally, we introduce the homogeneous Bony decomposition. For more details, we

refer readers to [1,11] and the references therein. Let u, v € S;’l (R9), then the homo-
geneous Bony decomposition of uv is defined by

uv = Tuv + Tvu + R(u, v),

where T,v and T,u denote the homogenous paraproduct of v by u and u by v, respec-
tively

Tuv = Z Sj_luAjv,
JEZL
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Tvu = Z S.,'_lvAju,
JjEZ

and R(u, v) denotes the homogeneous remainder of # and v:

R(u,v) = Z AjuAkv
lj—kl=1

= ZAJ'MZ]'U

JEZL

with Ak = Ak—l + Ak + Ak+1-

3 Main Results

Acting the Leray-Hopf operator P := I +V(—A)~!div (see [1,11]) on equation (1.1),
we then have

{du + [(—=A)%u + Pdiv(u Q u)]dt = Zkzl Pgy (¢, u)d By, G.1)

1(0) = uo,

where o € (0, 1]. Following [6], we introduce the definition of local and global strong
solutions for the equation (1.1).

4—2q—3

Definition 3 Let2 < p,r < oo and the initial data ug € B), , ? be Fo-measurable.
(1) (u, TR) is called a local strong solution for the equation (1.1), if
(i) u is a progressively measurable process and for any 0 < T < oo,

4-—2q—3 43
well LPB,, "NL LIB,, ’,

tR(@) = inf{r = 05 ful o,
TBPv‘i

3 > R},
P
where R is a positive constant.

423
(ii) For almost all w € Q, u(t, x) € C([0, tr(w)): B, ¢ 7y, and the following
equality

IATR INTR
u(t ANTR) = ug — / [(=A)*u +Pdiv(u @ u)lds + 2/ Pgi (s, u)d By
0 k>1 0

holds P-a.s. in S’ (RY).
(2) We say that the local strong solution is unique, if (i, Tg) is another strong

solution, then

PloeQ: u=u, VO<t<tgATg}) =1
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3
Definition4 Let2 < p,r < ooand ug € B;r ” be Fy-measurable. We say that u
is a global strong solution for the equation (1.1), if the following two conditions are
fulfilled
(1) u is a progressively measurable process and for any 0 < T < oo, we have

4203 4—a—3
r poo P rop2 P
uelL, LFB,, NL,LyBp, 7.

423
(2) For almost all € @, u(t, x) € C([0, 00); B, » ¢ Py, and forall 0 < ¢t < oo, the
following equality

t t
u(t) = ug — / [(—=A)*u +Pdiv(u @ u)lds + Z/ Pgi (s, u)d By
0 k=1 0

holds P-a.s. in S’ (R%).

We are now in the position to state our two main results of this paper.

4203
Theorem 1 Let2 < p,r < ocandug € By, " be Fo-measurable. Assume that

0T x (CRLT BT A 2T
glt,u) [0, T] x (LTL,B, » o=~TRPp.r )

. 4-20—3
— L3L0B,, 7

fulfils
<
Pg(t, u)l T Ly|jull 5 rB4—2a—%
T (0} p,r T w [7,)‘
+Lo|lull a3 (3.2)
L [2 Iz
w=T>~p.r
IPg(t, u) —Pg(t, v)ll a2a 3 < Lillu — v A2a-3
2 prr ) 4 2£r P
T =0 P,r T~w~p.r
+Loflu —vll dads (33
Li,L3By,

where L1, Ly > 0 and Lj is small enough. Then, there is a constant R > 0 such that
there exists a unique local solution (u, Tg) to Eq. (1.1) with

P(tg > 0) = 1.

Theorem 2 With the same preamble as in Theorem 1. If further for sufficiently small
Lz >0,

IPg(t, wll 43 = L3llul 423
7LoBpr Ly LP By,
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+Ly|ul| a3 (3.4)
L, L3By, 7

and for any € > 0, there exists a constant y = y (¢) > 0 such that

P

luoll 403 <V (3.5
rB

Lw p.r

Then,
P(tg = 00) > 1 —e¢.

Example 1 Here, we give an example to show that the noise coefficient in the above
theorems is non-empty. Motivated by [6], let M > 0 be arbitrary, we take gy (¢, u) =

1L —M(1+1)
ﬁke u, k > 1. Then

-M
[Pg(z, u) —Pg(z, v)|l 423 =€ [lu—v 4203
2 P 2 rr P

T‘CZJ p.r T‘Cw p.r

Thus, conditions (3.2) and (3.3) are satisfied. Moreover, It is easy to verify that con-
dition (3.4) also holds.

In order to prove the main results, we need the following lemmas.

Lemma 1 ([14]) Assume 0 < T < o0, % <a<lL,1<p,g,p<o00oseR Letu
be a solution of

{B,u 4+ (=A)%u = f(t,x), (t,x)€[0,T) x R3,

u(0) = uo,
0 .s+27"‘72a 00 135 P -s+27"‘72a
where f € L3B), . Then, u € LTB), , N LBy, . Moreover, for any

p < p1 < oo, the following inequality

hll oz < C(lollg, + IS 2, )
‘C/T)l prqﬂl P-q L";Bp,ql’

holds for some positive constant C.

Lemma2Let0<T§oo,%<oz§l,2§p<oo,2§q§r<oocmdseR.

Then, the following stochastic fractional heat equation

(3.6)

du + (—=A)%udt = Zkzl grd Wi (1),
u(0) =0,

_ 2
has a unique solution u € L"(L; E‘;B;’, N CTB;J" ), where g = {gr, k > 1} €

E(;EZ)B‘;,_,”‘ is progressively measurable. Moreover, there exists a constant C > 0,
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such that for any g < q1 < 09,

[l 20 20 < Cligllipa prjgs—a. (3.7
r 5 T~w*p,r
Lmz";l B]}J‘Il q

Proof Taking the Fourier transform on both sides of (3.6), we conclude that the unique
solution u satisfies

t
Q8 =" /0 U (o E) AW (1)

k>1

Therefore, by using Minkowski’s inequality, Young’s inequality and [6, Lemma 2.5],
we get

”‘Pj(%_)ﬁ(t» E)”L{L,L?Lép = ||<Pj(§)ﬁ(h %_)”L%LZLSP

t
= HZ/O e_(t_t)Is‘zawj(é)é’k(t’,E)de(t/)

k>1

—(t—1")|EP ~
= Cfe T g @0 6)|

drr P
Ly Ly, L

LELLLFRLY

o 4"\D20) N
< Clle== g 000 6)|

LELFLLIZLY

; 1
_ __\92aj A
<c /0 e O/ O, 1 pdt!

2
q/2
Ly

< Cle M o @2’ Ol g 1y

= 2,8 ) g -

Consequently,

j(s+2) A
lall e = [P e @ Oy a1
L, L98,, 1 erTE G

< [T g u )| SR

q9rr27P
LTLZJlk LE l;

=Cligl | 2

T~w=p.r
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Let p’ be the conjugate number of p, then for any 8 € (0, %), we have

t
e | e R
® & 0
s
(Z/ e_(s_’/)lglza(s - t’)_ﬁwjgdek)ds
k=170
t n2ai
< CH/ o= (=1
0

N ey 2 _ .
[ [ e =P pam
0

k>1
S ’ 2a
Zf e CTER (s — 1) P aud Wy
k=170

4
L, LPL!

Lgds .

w

Ly

< Clem 7y

Ly,LI LY

where we have used the factorisation formula (see e.g. [5])

t
3 /0 TR )t )AW ()

k>1

o t
= Sl“ﬂ”/ e (¢ _ )BTl (3.9)
0

b
N
(Z/ ef(“’,)‘s‘za(s - t’)fﬂgojg’dek)ds.
0

k>1

Basic calculus then implies that
2aj (L
||e—ct2 T =1 ”Lq, < c22ieG=F)
T

Substituting this estimate into (3.8), we obtain

A 2ja(L—p)
lojillypzpr < €270

§ (et 2a _ ~
HZ/ e TR (s — 1) ﬁ‘/’jgdek‘
0

k>1

LyL,Lf

< szja(g—ﬂ) e—(s—t’)lflz"(s —t/)_ﬁ(ﬂjgk‘

q 27 P
Ly Ly, L22LE

w™s

< C22AGB) | g=G=NEP (g _ )P

@&k ‘
LEL3LLIELY

q

s 1

2ia(L_ o en2je (o4t _ A 2
< C2 JOl(q B / e 2¢247% (s t)(s _ t/) 2ﬁ||§0jgk”Lr lszdt/H g
0 'k E LT

. 1
2ja(t=pyy —c22er 217 A
<C2 q lle t ||L|T||€018k||L;LZ)II3L§

.2
2.0, s
< 27 ; p .
= ||¢Jgk||L?Lw[£L§
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Therefore,

. =200
el ez, = |27 oz,

(3.10)

: 2a
Je+T—a), A
< €[Nl g 1y .

v+——a
T~wPp,r

= Cligll 2
[,q

Using the interpolation inequality for (3.8) and (3.10), we obtain (3.7), Finally, u €

20

L™ (; CTB . ," ) holds by utilising factorisation formula (3.9) again (see e.g. [5]).
We thus complete the proof. O

Lemma3 Letl < p,p,q < oo% <a < 1with 2 +1-2a < Oand5—4a—%+47“ >

0. Then, there exists a constant C > 0 such that

leoll g samgite < Clull g3
T =p9q T~p.q

”U” ot Qa,l+201-
T~prq

Proof According to Bony’s decomposition, we have

Aj(uv)ZAJ'TMU—I—A/‘TUM-i—AjR(u,U)
Z Aj(sk—luAkv)-F Z Aj(sk_ﬂ)Aku)
lk—jl=<4 lk—jl<4
> A (Y Awudw)
k—j>3 k
=11+ 1L +1Is.

For the term I, by Young’s inequality and /9 < [°°, we get

g = D oS- IUAkU)”g
o P L7 L
= 3 15 lu*Akvu
|k—jl<4
./'\
_ A
< D el pplSe-rullppp
[k—jl<4
—k(1—2a+2—°‘)‘ k(1—2a+22¢y & N
< > 2 o2 2|1 Sk— )
= II Sk IMHL/;Lé ZOC”(Pk ”L/T’Lé’
lk—jl<4
k(1—2a+2 )
< > 2 Oledllp ol |z
lk—j| <4 LrBi4
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Therefore,

; 3, da
Hz”S“‘“‘ﬁ L

q
P 1
(—k)(S—da—3 +%) k@4—2a-342) .
< Z 2 P2 P ||‘Pk”||L/;L§’ lq””” o pl-20t2
k—j|<4 J ET l,q
jG—da—34d ) 42e-3 420y L
<> 2 rTe2 E (R 7. ﬂllullﬁp RIS
ljl<4 ! b
j
< C”U” A4—2a— 20‘ ”u” p L1— 2a+2—°‘
T P Lq

SCII g3 i2e lul

T~pPq

3, 2
P
T~p-9

58 55 d d
where we have used the fact that B, ;, — B4, p2 < p1,s1 + =2+ o

Similarly,

. 3, 4o
27674 Py

o =Cllvl
J

T

A-20-342 el 4o 20-3 422

P
p.q T=pP9q

For the term I3, utilising Bernstein inequality, we get

j—4a— )
2 ALl g
Li L
. 3, 4o -
521(5_4‘)‘_?"7) Z QAU 2,
Pt LELE
—_—
_ 3 4 ks -~
21(5 —da + ) Z Aru x Apv| »
LEL?
k—j=3 T
Se_ A~ 3 4a g -
521(5 da + ») Z Aru Akv‘
LoLY LoL]
Zi>3 T™E The
4o -
—_= ’; .
EPYCET 34 da) Z PhG=5 ‘A u‘ Akv’
LYLE LYLE

k—j=3

IA

LBy oo k

||U|| . 2a7l+201 Z 2(j—k)(5—4a_
78 —Jjz3

+40) k(20— 5 +2) T

Ak‘

pypr’
LYLf
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Thus,
(5_do— 3 pday ~
27~ D 4
el
< Jlv] 3 2 Ty
= o pi-2e-3+ 2 pB472a7%+27°‘
T2p,00 1<-3 T2p.q
< Clll . .472a7%+27"‘”u” pB472a7%+270‘
T~ p.00 T~p9q
=< Clp|| Y .472a7%+27"”u” 08472a7%+27a'
T~r9 T=rq
The proof is completed. O

LetO0 < R < 1, which will be determined later. We introduce a continuous decreas-
ing function 9 : [0, co) — [0, 1] defined via

Bx):={0v2—R0)IAL
We consider the following modified system of the equation (1.1)

{du + [(—A)*u 4+ Pdiv(x,u @ u)ldt = Y - Pgi(t, u)d By, (3.11)

u(0) = uo,

where x,(t) = 19(||u|| , _4_a_137).
T=p.r

Proposition 1 Under the assumptions of Theorem 1. Equation (3.11) has a global
strong solution.

Proof Equation (3.11) can be rewritten as
u(t) = e %0 + S(ru @ u) + K(t, u),
where S and K are, respectively, the solutions to the fractional heat equation

{ 3 S(A) + (—A)*S(A) = —PdivA,
S(A)|r=0 =0,

and stochastic fractional heat equation

{dK(t, ) + (=M K (t, wydt = Yy gkd Wi (1),
K(t,u)|;=0 = 0.

Define
W) i=e "N + SGruu @ u) + K(t, u).
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Let
X7 = {w : w is progressively measurable, |w| x, < +oo}
with
lwlx, = llull g3t llull deam3
L7 [® P L 2 p
w~T ~p.r w=T>~p.r

For any p; > 2, we obtain

”6_ B u()” 4-2q—3 422
LZ)C;IBp,ra RN
j(4—20—3 422) —t|E2 A
= |2’ poal e u .
I lle; 0||L‘;' Ly | Ll
[(=2a—+2) g2 s
< ||2’ Pl e u
<| lle; 0||L‘;' L§|L;1;
j@—2a—3) .
SC”Z P ||€01M0||L§ Ll
= Clluoll 4 a3
oBp.r
Therefore,
(=AY
le™" " uollx, < Clluoll 4,3 - (3.12)
LBpr 7
By Lemmas 1 and 3, we have
1SCau @ wllxy = Clu @ul <y, 3
WwLrBp.g
=il | eyl s (3.13)
‘C%'Bﬁﬂ P ‘C%'Bl’vq ’ LZ)
< CR|u .
< CRIul ey
=T~ pq
For the stochastic term, by Lemma 2, we get
”K(t’ M)HXT =< C”Pf(t’ Li)” 4—2q—3
L2008 P
T~w?2p.r
1 (3.14)
<C(LiTHul g Lol s
L(:) E["OBPJ LZJ T=p.r
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Combining (3.12), (3.13) and (3.14), we obtain

1@ lx, < Cillluol oy +RIul s
B P r L2B

P
w=p.r Lw T=r4

1
2
+ L1 T2 ul| g3 + Lo|lull razs“"”%] (3.15)

w=~T =p.r w=T>=Pp.r

1
< Cifluol ey + (R+LITE + Lo)lulls, |

Lw p.r

Next, we estimate the term W (1) — W (v) and we have

W) — W) = Suu @u — xpv @v) + [K(1,u) — K(t,v)]
I + 1.

In order to estimate II;. Firstly, similar to [3], one can get that

D= ol < R 7w —vll o, s (3.16)
T=pr.r

We now divide II; into the three following cases.
(D If x, >0, xy > 0, then

[xut @ u — xpv @ V| <[(Xu — Xo)u @ u| + | xu( — v) ® ul
+ v ® ( —v)l.

Furthermore, by Lemma 3 and (3.16), we then have

1O — xv)u @ ul| 5 9q_3 = [ Xu — XU|L?°||M Q ull 5—2a—3
IB p IB p
TRp.r TRPp.r
2
< It = ol lul
2
TPp.r

.47(17%

k]

< 4RJu vl

TPp.r

A—a—

o

and

Ixu@ —v)Qull 5, 3 Flxv®@@—v) 5, 3
IB p IB p

T=p.r T~p.r

<hu=vl | uy (Il | euy + 00 o y)
2B, 7 2B, ? 2B, 7P

<4R|u —v .
<4Rlu—vll | .3
T>~p.r

) If xu > 0, xp =0, then

[xult @ u — X0 @ V| <[(Xu — Xo)U ® ul,
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Therefore,

[xuu @ u — xpv @l 55, 3 <4R[u—vll ~,, 3.
IB p 2

P
T=p.r T=pr

3) If xy, =0, xy > 0, then by the similar argument, we have

.4—04—%’

Ixuu @ u — xvv ® vl | 52— < 4R|lu — vl 2
T p.r T p.r

Combing all the above estimates, we obtain

Ml < Cllxn ®u—xv@vll s
wLrBp.r

< CR|u — v g3
Lnc:B,, "’

To estimate the term II,, we observe that Lemma 3 implies

Iz [x,; < CIPf(t,u) —Pf(t, v)llﬁ2 43

P
T~w2p,r

sC(Lilu=vl g+ Lale—ol )

2 P
TL"(:) p.r wﬁTBp,r

1
sC(LiTHu—vl g Lol ).
LI, LYB r LL2B,, ©

w~T ~p.r
Consequently,
1
W) —Y)llx, < Co(R+LiT2 + Lo)|lu — vl x,. (3.17)
Define
M :=2Cilluoll ., ,,_ 3, (3.18)
LBy, "
R := min{1, 8 min{C;, C2})"}, (3.19)
Xromi={w:weXr,|wlx, <M}, (3.20)
~ 1 2
o= min{l, (—) } 3.21)
4L1 max{Cy, C>}
If L, is sufficiently small such that
1
max{C, C2}Ly < = (3.22)

g’
then the mapping W becomes a contracting mapping on X 7 ,,. Therefore, the equation
(3.11) has a unique strong solution u on the interval [0, f"] by Banach’s fixed point
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theorem (see [1, Lemma5.5]). Repeating this procedure, we obtain a global strong
solution u for the equation (3.11). O

With all these in hand, we proceed to show our two main theorems.

Proof of Theorem 1. Let u be the solution for the equation (3.11). Define the stopping
time

2 (®) :=inf[t >0l | g > R}
7Bp.q

with the convention inf ) = oo. Then for almost all w € €2, it holds that

A—g—3
ueC(0,r(@): Bpg 7).

If tp(w) < 400, weset u(t) := 0, V¢t > tr(w). Then, (u, ) is the unique local
strong solution to (3.1). According to (3.15), we can show that

Jul iy =Cifluoll oy + Rl
L, L9 e WBpr ! Lo, L7 g
E/\TR
1
+ = lul aat + Lallul ot ]
2 WLy p.r Wl Bpr
k R
< -
— C] ||1/l()|| , .4—20(7% + 2 ”M”L' 8,4,2()[,?
w~p.r 2} %/\TR p.r
+ 1|| l
—|lu 3
4 L2 A=
01 g pr
holds for all k > (2C1L1)?. Consequently,
1
[[uel] a3 = 2Ctluoll 4o 3 4 Sllull A3
LLLT, Bpr LBy, T2 r B,
EAtR EAIR
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Similarly, we get

CiLy
—t(-A
Jul o ST N g T
et By, 7 LC:B,, ! k2 ey By, 7
TR x TR
+ —llull deamd
4 sz %Ar Bp'r :
C2L1
A
<l Muol s+ ol s
rr2 B P 5 P
w1 Pp.r w”p.r
k
—|lu 3
+2|| ”Lr 5 A—a— =
O L TP
Therefore,
2
—t(=A) 1~1
flull a3 =2|e uo| a3 T ——lluoll 45, 3.
LZ}‘CQI BPJ r LZ}‘C’%B])J' ! k7 LZ;BP.;' ’
EATR T
It follows from Chebyshev’s inequality that
IP( <1)<1P(|| I >R)
T - u 3
ER) = e =
N
< 1|| l
= Sl A3
R Ly 2} Bra ?
< 1|| l
= 5l A3
R L;LfRA%BP.q ?
1 A 4C?L,
< (2wl T ol ).
L3 B,, 7 2 LB,
For any 0 < ¢ < 1, there exists g > 0, such that
1
" R
jrd—2a—3),  ~ €
EY 2 Plgjioly | = 5

J>0s
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Thus,
1
L
—H(~A) jrd—a=2) _jgPe
e N ugl s = [ED2 O T [P
LgJﬁ%B,,,, el I
1
L
RS i 3 2a
jrd—a—=), —t ~
<5 T EX2 e g0l
J<Je e

IA

Re 1
?+C3k 2 |luo |l e

Lw p.r

If we choose

k= max|@C1L1)% 16R72e722Cs +4Ci Lol s |
LB, 7

w=p.r

then we have

Thereby,

v
|
)

Since ¢ is arbitrary small, we get IP’(IR > 0) = 1. The proof is thus completed. O

Proof of Theorem 2. Similar to (3.15), for any 0 < ¢ < 00, we have

el = Crfluolgay +Lalel s
{qu,r LZ;EtArRBp,r

+ (R+ L) ul ]
L' L2 P

r
w~T”p,r

(3.23)

Choose L3 > 0 such that C1L3 < 1. Utilising (3.19) and (3.22), we obtain

lall , amamy =2CHMH0l 43

r
Lw INTR ™D Lw p.r
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By Fatou’s lemma (see [7, Theorem 1.5.4]), we have

RP(tg < 00) = B(Igpen lim lull ., 3)

INTR =D,

<timinf E(1cpenollel | o 3)

—00 P
IATR DD,
<2Cilluoll 4 pe_2-
WBpr "
Hence,
P(tr < 00) = —=lluoll 4 0-3-
w=p.r
Thus,
2C
P(tg = 00) = 1 = —Llluoll 4 5 3.
R LBy

It follows that for any ¢ > 0, choosing y = %, we obtain
Pt =o0) >1—c¢.

We thus complete the proof of Theorem 2. O
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