E-Thesis 749 views 80 downloads
An Investigation of Transmission Range for an Instrumented Mouthguard Head Impact Telemetry System for Rugby Union / DANIEL MARSHALL
Swansea University Author: DANIEL MARSHALL
Abstract
Concussions and sub concussive head impacts in contact sports have become a significant issue over the past two decades. The consensus in current literature is that large head impacts with high linear and rotational acceleration are the main cause of concussions in sport. Head impact telemetry (HIT)...
Published: |
Swansea
2021
|
---|---|
Institution: | Swansea University |
Degree level: | Master of Research |
Degree name: | MSc by Research |
Supervisor: | Williams, Elisabeth |
URI: | https://cronfa.swan.ac.uk/Record/cronfa58698 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2021-11-18T11:48:33Z |
---|---|
last_indexed |
2021-11-19T04:26:12Z |
id |
cronfa58698 |
recordtype |
RisThesis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-11-18T12:06:57.6267625</datestamp><bib-version>v2</bib-version><id>58698</id><entry>2021-11-18</entry><title>An Investigation of Transmission Range for an Instrumented Mouthguard Head Impact Telemetry System for Rugby Union</title><swanseaauthors><author><sid>d9e14f4eb38cbb427d9c66480d8e740c</sid><firstname>DANIEL</firstname><surname>MARSHALL</surname><name>DANIEL MARSHALL</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-11-18</date><abstract>Concussions and sub concussive head impacts in contact sports have become a significant issue over the past two decades. The consensus in current literature is that large head impacts with high linear and rotational acceleration are the main cause of concussions in sport. Head impact telemetry (HIT) systems have been developed to measure and monitor the inertial loading of the head. HIT technology has now evolved so these systems can be worn by athletes in competition. There are currently very few validated HIT systems able to monitor player loads. Existing systems have been found to overestimate impacts, do not record in real-time or are not suitable to be used in non-helmet sports, such as rugby. The purpose of this study was to investigate the transmission range of the PROTECHT™ instrumented mouthguard under different conditions, to identify particular conditions that significantly affect signal quality. Head impacts were simulated using specialist software, on an instrumented mouthguard, under different conditions across two days of testing. Signal quality was evaluated under each condition. Standing and kneeling were found to have no significant effect on signal quality. However, lying prone on the ground did have a significant effect on signal quality. Under these conditions, there was a significant relationship between an increase in distance and an increase in packet loss, which was represented by a decrease in signal quality. This correlation holds when incorporating head direction and head orientation. This study highlights the importance of this investigation as the transmission range of PROTECHT™ head impact telemetry system is now known under the conditions investigated. The results reported in this study provide insight regarding conditions under which the system successfully transmits real time data and those where improvements will be required.</abstract><type>E-Thesis</type><journal/><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher/><placeOfPublication>Swansea</placeOfPublication><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords/><publishedDay>18</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-11-18</publishedDate><doi/><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><supervisor>Williams, Elisabeth</supervisor><degreelevel>Master of Research</degreelevel><degreename>MSc by Research</degreename><degreesponsorsfunders>KESS II; SWA</degreesponsorsfunders><apcterm/><lastEdited>2021-11-18T12:06:57.6267625</lastEdited><Created>2021-11-18T11:44:48.0442229</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>DANIEL</firstname><surname>MARSHALL</surname><order>1</order></author></authors><documents><document><filename>58698__21570__995dd9adede745e1966e426f914d3bbf.pdf</filename><originalFilename>Marshall_Daniel_H_MSc_Research_Thesis_Final_Embargoed_Redacted_Signature.pdf</originalFilename><uploaded>2021-11-18T12:01:08.0198719</uploaded><type>Output</type><contentLength>2953211</contentLength><contentType>application/pdf</contentType><version>E-Thesis – open access</version><cronfaStatus>true</cronfaStatus><embargoDate>2023-03-26T00:00:00.0000000</embargoDate><documentNotes>Copyright: The author, Daniel H. Marshall, 2021.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-11-18T12:06:57.6267625 v2 58698 2021-11-18 An Investigation of Transmission Range for an Instrumented Mouthguard Head Impact Telemetry System for Rugby Union d9e14f4eb38cbb427d9c66480d8e740c DANIEL MARSHALL DANIEL MARSHALL true false 2021-11-18 Concussions and sub concussive head impacts in contact sports have become a significant issue over the past two decades. The consensus in current literature is that large head impacts with high linear and rotational acceleration are the main cause of concussions in sport. Head impact telemetry (HIT) systems have been developed to measure and monitor the inertial loading of the head. HIT technology has now evolved so these systems can be worn by athletes in competition. There are currently very few validated HIT systems able to monitor player loads. Existing systems have been found to overestimate impacts, do not record in real-time or are not suitable to be used in non-helmet sports, such as rugby. The purpose of this study was to investigate the transmission range of the PROTECHT™ instrumented mouthguard under different conditions, to identify particular conditions that significantly affect signal quality. Head impacts were simulated using specialist software, on an instrumented mouthguard, under different conditions across two days of testing. Signal quality was evaluated under each condition. Standing and kneeling were found to have no significant effect on signal quality. However, lying prone on the ground did have a significant effect on signal quality. Under these conditions, there was a significant relationship between an increase in distance and an increase in packet loss, which was represented by a decrease in signal quality. This correlation holds when incorporating head direction and head orientation. This study highlights the importance of this investigation as the transmission range of PROTECHT™ head impact telemetry system is now known under the conditions investigated. The results reported in this study provide insight regarding conditions under which the system successfully transmits real time data and those where improvements will be required. E-Thesis Swansea 18 11 2021 2021-11-18 COLLEGE NANME COLLEGE CODE Swansea University Williams, Elisabeth Master of Research MSc by Research KESS II; SWA 2021-11-18T12:06:57.6267625 2021-11-18T11:44:48.0442229 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised DANIEL MARSHALL 1 58698__21570__995dd9adede745e1966e426f914d3bbf.pdf Marshall_Daniel_H_MSc_Research_Thesis_Final_Embargoed_Redacted_Signature.pdf 2021-11-18T12:01:08.0198719 Output 2953211 application/pdf E-Thesis – open access true 2023-03-26T00:00:00.0000000 Copyright: The author, Daniel H. Marshall, 2021. true eng |
title |
An Investigation of Transmission Range for an Instrumented Mouthguard Head Impact Telemetry System for Rugby Union |
spellingShingle |
An Investigation of Transmission Range for an Instrumented Mouthguard Head Impact Telemetry System for Rugby Union DANIEL MARSHALL |
title_short |
An Investigation of Transmission Range for an Instrumented Mouthguard Head Impact Telemetry System for Rugby Union |
title_full |
An Investigation of Transmission Range for an Instrumented Mouthguard Head Impact Telemetry System for Rugby Union |
title_fullStr |
An Investigation of Transmission Range for an Instrumented Mouthguard Head Impact Telemetry System for Rugby Union |
title_full_unstemmed |
An Investigation of Transmission Range for an Instrumented Mouthguard Head Impact Telemetry System for Rugby Union |
title_sort |
An Investigation of Transmission Range for an Instrumented Mouthguard Head Impact Telemetry System for Rugby Union |
author_id_str_mv |
d9e14f4eb38cbb427d9c66480d8e740c |
author_id_fullname_str_mv |
d9e14f4eb38cbb427d9c66480d8e740c_***_DANIEL MARSHALL |
author |
DANIEL MARSHALL |
author2 |
DANIEL MARSHALL |
format |
E-Thesis |
publishDate |
2021 |
institution |
Swansea University |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised |
document_store_str |
1 |
active_str |
0 |
description |
Concussions and sub concussive head impacts in contact sports have become a significant issue over the past two decades. The consensus in current literature is that large head impacts with high linear and rotational acceleration are the main cause of concussions in sport. Head impact telemetry (HIT) systems have been developed to measure and monitor the inertial loading of the head. HIT technology has now evolved so these systems can be worn by athletes in competition. There are currently very few validated HIT systems able to monitor player loads. Existing systems have been found to overestimate impacts, do not record in real-time or are not suitable to be used in non-helmet sports, such as rugby. The purpose of this study was to investigate the transmission range of the PROTECHT™ instrumented mouthguard under different conditions, to identify particular conditions that significantly affect signal quality. Head impacts were simulated using specialist software, on an instrumented mouthguard, under different conditions across two days of testing. Signal quality was evaluated under each condition. Standing and kneeling were found to have no significant effect on signal quality. However, lying prone on the ground did have a significant effect on signal quality. Under these conditions, there was a significant relationship between an increase in distance and an increase in packet loss, which was represented by a decrease in signal quality. This correlation holds when incorporating head direction and head orientation. This study highlights the importance of this investigation as the transmission range of PROTECHT™ head impact telemetry system is now known under the conditions investigated. The results reported in this study provide insight regarding conditions under which the system successfully transmits real time data and those where improvements will be required. |
published_date |
2021-11-18T04:15:25Z |
_version_ |
1763754037471084544 |
score |
11.037144 |