Journal article 1314 views 300 downloads
Weak convergence of Euler scheme for SDEs with low regular drift
Numerical Algorithms, Volume: 90, Issue: 2, Pages: 731 - 747
Swansea University Authors:
YONGQIANG SUO, Chenggui Yuan
-
PDF | Accepted Manuscript
Download (309.68KB)
DOI (Published version): 10.1007/s11075-021-01206-6
Abstract
In this paper, we investigate the weak convergence rate of Euler-Maruyama’s approximation for stochastic differential equations with low regular drifts. Explicit weak convergence rates are presented if drifts satisfy an integrability condition including discontinuous functions which can be non-piece...
| Published in: | Numerical Algorithms |
|---|---|
| ISSN: | 1017-1398 1572-9265 |
| Published: |
Springer Science and Business Media LLC
2022
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa58372 |
| first_indexed |
2021-10-18T08:26:52Z |
|---|---|
| last_indexed |
2025-04-16T03:59:31Z |
| id |
cronfa58372 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-04-15T13:00:59.5925687</datestamp><bib-version>v2</bib-version><id>58372</id><entry>2021-10-18</entry><title>Weak convergence of Euler scheme for SDEs with low regular drift</title><swanseaauthors><author><sid>9f5e288c171f1e0f01062b8a5a9007af</sid><firstname>YONGQIANG</firstname><surname>SUO</surname><name>YONGQIANG SUO</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>22b571d1cba717a58e526805bd9abea0</sid><ORCID>0000-0003-0486-5450</ORCID><firstname>Chenggui</firstname><surname>Yuan</surname><name>Chenggui Yuan</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-10-18</date><abstract>In this paper, we investigate the weak convergence rate of Euler-Maruyama’s approximation for stochastic differential equations with low regular drifts. Explicit weak convergence rates are presented if drifts satisfy an integrability condition including discontinuous functions which can be non-piecewise continuous or in some fractional Sobolev space.</abstract><type>Journal Article</type><journal>Numerical Algorithms</journal><volume>90</volume><journalNumber>2</journalNumber><paginationStart>731</paginationStart><paginationEnd>747</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1017-1398</issnPrint><issnElectronic>1572-9265</issnElectronic><keywords>Low regular coefficients; Weak convergence rate; Euler-Maruyama’s approximation</keywords><publishedDay>1</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-06-01</publishedDate><doi>10.1007/s11075-021-01206-6</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2025-04-15T13:00:59.5925687</lastEdited><Created>2021-10-18T09:25:46.0005832</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>YONGQIANG</firstname><surname>SUO</surname><order>1</order></author><author><firstname>Chenggui</firstname><surname>Yuan</surname><orcid>0000-0003-0486-5450</orcid><order>2</order></author><author><firstname>Shao-Qin</firstname><surname>Zhang</surname><order>3</order></author></authors><documents><document><filename>58372__21412__586005ba7e6c48a6a66c988a66ef3f81.pdf</filename><originalFilename>58372.pdf</originalFilename><uploaded>2021-11-02T16:33:38.4597987</uploaded><type>Output</type><contentLength>317110</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2022-10-02T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://v2.sherpa.ac.uk/id/publication/16622</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-04-15T13:00:59.5925687 v2 58372 2021-10-18 Weak convergence of Euler scheme for SDEs with low regular drift 9f5e288c171f1e0f01062b8a5a9007af YONGQIANG SUO YONGQIANG SUO true false 22b571d1cba717a58e526805bd9abea0 0000-0003-0486-5450 Chenggui Yuan Chenggui Yuan true false 2021-10-18 In this paper, we investigate the weak convergence rate of Euler-Maruyama’s approximation for stochastic differential equations with low regular drifts. Explicit weak convergence rates are presented if drifts satisfy an integrability condition including discontinuous functions which can be non-piecewise continuous or in some fractional Sobolev space. Journal Article Numerical Algorithms 90 2 731 747 Springer Science and Business Media LLC 1017-1398 1572-9265 Low regular coefficients; Weak convergence rate; Euler-Maruyama’s approximation 1 6 2022 2022-06-01 10.1007/s11075-021-01206-6 COLLEGE NANME COLLEGE CODE Swansea University 2025-04-15T13:00:59.5925687 2021-10-18T09:25:46.0005832 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics YONGQIANG SUO 1 Chenggui Yuan 0000-0003-0486-5450 2 Shao-Qin Zhang 3 58372__21412__586005ba7e6c48a6a66c988a66ef3f81.pdf 58372.pdf 2021-11-02T16:33:38.4597987 Output 317110 application/pdf Accepted Manuscript true 2022-10-02T00:00:00.0000000 true eng https://v2.sherpa.ac.uk/id/publication/16622 |
| title |
Weak convergence of Euler scheme for SDEs with low regular drift |
| spellingShingle |
Weak convergence of Euler scheme for SDEs with low regular drift YONGQIANG SUO Chenggui Yuan |
| title_short |
Weak convergence of Euler scheme for SDEs with low regular drift |
| title_full |
Weak convergence of Euler scheme for SDEs with low regular drift |
| title_fullStr |
Weak convergence of Euler scheme for SDEs with low regular drift |
| title_full_unstemmed |
Weak convergence of Euler scheme for SDEs with low regular drift |
| title_sort |
Weak convergence of Euler scheme for SDEs with low regular drift |
| author_id_str_mv |
9f5e288c171f1e0f01062b8a5a9007af 22b571d1cba717a58e526805bd9abea0 |
| author_id_fullname_str_mv |
9f5e288c171f1e0f01062b8a5a9007af_***_YONGQIANG SUO 22b571d1cba717a58e526805bd9abea0_***_Chenggui Yuan |
| author |
YONGQIANG SUO Chenggui Yuan |
| author2 |
YONGQIANG SUO Chenggui Yuan Shao-Qin Zhang |
| format |
Journal article |
| container_title |
Numerical Algorithms |
| container_volume |
90 |
| container_issue |
2 |
| container_start_page |
731 |
| publishDate |
2022 |
| institution |
Swansea University |
| issn |
1017-1398 1572-9265 |
| doi_str_mv |
10.1007/s11075-021-01206-6 |
| publisher |
Springer Science and Business Media LLC |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
| document_store_str |
1 |
| active_str |
0 |
| description |
In this paper, we investigate the weak convergence rate of Euler-Maruyama’s approximation for stochastic differential equations with low regular drifts. Explicit weak convergence rates are presented if drifts satisfy an integrability condition including discontinuous functions which can be non-piecewise continuous or in some fractional Sobolev space. |
| published_date |
2022-06-01T04:59:08Z |
| _version_ |
1851096037780881408 |
| score |
11.089407 |

