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1 Introduction

Stochastic differential equations (SDEs for short) with singular coefficients have
been extensively studied recently, see [12, 25, 26, 27, 28] and references therein.
Meanwhile, in order for one to understand the numerical approximation of SDEs
with irregular coefficients, numerical schemes have been established. The strong
and weak convergence rates of Euler-Maruyama’s (abbreviated as EM’s) scheme
for irregular SDEs were obtained, see [2, 3, 6, 7, 11, 13, 14, 16, 17, 19, 20, 23]
for instance. [5, 8, 9, 15, 18, 10, 22] investigated Lp-approximation of solutions
to SDEs with a discontinuous drift and obtained the corresponding Lp-error
rates under differential assumptions on coefficients. More precisely, [9] investi-
gated the Lp-error rate at least 1/2 with p ∈ [1,∞) for the scalar SDEs with
a piecewise Lipschitz drift and a Lipschitz diffusion coefficient that is non-zero
at discontinuity points of the drift coefficient, this result has been extended to
the case of scalar jump-diffusion SDEs in [22]. Based on the assumptions in
[9, 22], [8, 10] showed the Lp-error rate at least 3/4 under additional piecewise
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smoothness assumptions on the coefficients, where they employed a novel tech-
nique by studying equations with coupled noise, and also showed that besides
the assumptions in [10], the Lp-error rate 3

4
can not in general be improved

even under further piecewise regularity.)???? the Lp-error rate 3/4 can be in
general not be improved even when further piecewise regularity were imposed
on coefficients of the scalar SDEs additionally to the assumptions in [10]. Under
the condition of the Sobolev-Slobodeckij-type regularity of order κ ∈ (0, 1), [18]
obtained the L2-error rate min{3/4, (1 + κ)/2} − ε (for arbitrarily small ε > 0)
of the equidistant EM’s scheme for scalar SDEs with irregular drift and additive
noise by using an explicit Zvonkin-type transformation and the Girsanov trans-
formation. By using a suitable non-equidistant discretization, [18] also yields
the strong convergence order of 1+κ

2
− ε for the corresponding EM’s scheme.

In this paper, we shall investigate the weak error of EM’s scheme for the
following SDE on Rd

dXt = b(Xt)dt+ σdWt, X0 = x ∈ Rd, (1.1)

where (Wt)t≥0 is a d-dimensional Brownian motion with respect to a complete
filtration probability space (Ω, (Ft)t≥0,F ,P). The associated EM’s scheme
reads as follows: for any δ ∈ (0, 1),

dX
(δ)
t = b(X

(δ)
tδ

)dt+ σdWt, X
(δ)
0 = x, (1.2)

where tδ = [t/δ]δ and [t/δ] denotes the integer part of t/δ. The weak error is
concerned with the convergence of the distribution of the EM’s scheme. Pre-
cisely, it is concerned with the approximation of Ef(Xt) by Ef(X

(δ)
t ) for a given

function f . The weak error has been obtained for some SDEs with discontin-
uous drifts in [7, 11, 21]. It is worth noting that the test function f in these
references is assumed to be Hölder continuous. When the test function f was
relaxed to be just measurable and bounded, the result of weak convergence rate
of EM’s scheme was obtained in [1] for SDEs with smooth coefficients. Re-
cently, [4, 23] investigated the weak convergence rate of EM’s scheme for SDEs
with irregular coefficients by using Girsanov’s transformation, and [3] used an
integrability condition to obtain strong convergence rates for multidimensional
SDEs with the aid of the Krylov estimate and the heat kernel estimate of Gaus-
sian type process established by the parametrix method in [16]. Inspired by [3]
and [4, 23], we shall give a note on the weak error for (1.1) with b satisfying an
integrability condition (see (H2) below) which is similar to (A2’) in [3], and the
given function f being only bounded and measurable on Rd. Functions satisfy-
ing (H2) is called the Gaussian-Besov regularity, see comments after (A2’) of [3].
Discontinuous functions can also satisfy some kind of Sobolev-Slobodeckij-type
regularity which subjects to the Gaussian-Besov regularity indicated by (H2),
see examples in subsection 2.2 or [3, Example 4.3]. Thus we say the drift term
b is “low regular” instead of irregular here. Moreover, (H2) also allows that the
drift term satisfies a sub-linear growth condition (see (H1) below).

The remainder of this paper is organized as follows: The main result is
presented in Section 2. All the proofs are given in Section 3.
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2 Main Result and Examples

2.1 Assumption and Main result

Let | · | be the Euclidean norm, 〈·, ·〉 be the Euclidean product. ‖ · ‖ denotes
the operator norm. We denote ‖f‖∞ = supx∈Rd |f(x)| for any bounded and
measurable function f on Rd. Throughout this paper, we assume that the
coefficients of (1.1) satisfy the following assumptions:

(H1) b : Rd → Rd is measurable and σ is an invertible d×d-matrix. There exist
β ∈ [0, 1) and nonnegative constants L1, L2 such that

|b(x)| ≤ L1 + L2|x|β, x ∈ Rd.

(H2) There exist p0 ≥ 2, α > 0 and φ ∈ C((0,+∞); (0,+∞)) which is non

increasing on (0, l) and
∫ l
0
φ2(s)ds <∞ for some l > 0 such that

sup
z∈Rd

∫
Rd×Rd

|b(y)− b(x)|p0 e−
|x−z|2
s
− |y−x|

2

r

s
d
2 r

d
2

dxdy ≤ (φ(s)rα)p0 , s > 0, r ∈ [0, 1].

It is clear that (1.2) also has a unique strong solution. The index α in (H2)
is used to characterize the order of the continuity and the function φ is used to
characterize the type of the continuity. From examples in the next subsection,
it is clear that functions sharing the same order of continuity can have different
types of continuity.

We now formulate the main result.

Theorem 2.1. Assume (H1)-(H2). Then for any T > 0 and any bounded
measurable function f on Rd, there exists a constant CT,p0,σ,x > 0 such that

|Ef(Xt)− Ef(X
(δ)
t )| ≤ CT,p0,σ,x‖f‖∞δα, t ∈ [0, T ], (2.1)

where p0 is defined in (H2). If the growth condition in (H1) is replaced by
|b(x)| ≤ L1 + L2|x|, then (2.1) also holds for T, L2, p0 and σ satisfying

TL2‖σ−1‖‖σ‖
√

2(p0 + 1)(p0 + 3)

p0 − 1
< 1. (2.2)

Remark 2.1. By [28, Theorem 1.1], (1.1) has a unique strong solution under
(H1). It is also clear that (1.2) has a unique pathwise solution.

For the bounded and irregular b, there are many results on strong and weak
error of EM’s scheme, see e.g. [3, 7, 11, 18] and references therein, and the
weak error can not be derived from the strong error directly if f is just a
bounded and measurable function. We would like to highlight that authors in
[18] has obtained the rate of strong convergence for one-dimensional SDEs if b
is in L1(R) and bounded, and satisfies the Sobolev-Slobodeckij-type regularity.
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This result is better than the present one in Theorem 2.1. However, results
in [18] relied on an Zvonkin-type transformation which can be given explicitly
in one dimension, and some favourable properties are lost in high dimensions.
Here, only Girsanov’s transformation is used, while we allow that the SDE
is multi-dimensional and that the drift satisfies a sub-linear growth condition.
Moreover, we obtain the same convergence rate when b has linear growth, as long
as (2.2) holds. Our assumption (H2) also includes the Sobolev-Slobodeckij-type
regularity, see Example 2.4 in the next subsection. To obtain higher convergence
rate as in [18], it seems that we need to make a deep investigation on the
Zvonkin-type transformation.

In the assumption (H2), if α is a decreasing function of p0, then we can
choose p0 = 2 and obtain the highest convergence rate in (2.1), see Example
2.3.

Remark 2.2. In [3], the strong convergence and the convergence rate are in-
vestigated with the drift satisfying an integrability condition and boundedness.
Here we obtain the weak convergence rate of EM’s scheme, where the drift does
not need to be bounded and the test function f in (2.1) is only bounded and
measurable. Moreover, the convergence rate is better than the rate obtained in
[3, Theorem 1.3].

From examples in the next subsection, one can see that the drift could be
discontinuous. This means that we have extended the results in [1] where the
coefficients must be smooth. However, our result is not optimal in the smooth
case since the classical order of the weak error is α = 1 for SDEs with smooth
coefficients in [1].

Remark 2.3. In [19, 21], authors considered the weak convergence rate of the
EM’s scheme for (1.1) with the drift b is of sub-linear growth and b = bH + bA,
where bH is α-Hölder for some α ∈ (0, 1) and bA belongs to a class A which
does not contain any nontrivial Hölder continuous functions. The order of the
convergence rate obtained in [21] is α

2
∧ 1

4
, even if bA ≡ 0. However, the order

of the convergence rate in Theorem 2.1 comes from the continuity order α in
(H2), and it can be greater than 1

4
.

The class A in [19, 21] is given by A-approximation. In contrast to the
A-approximation, our condition (H2) is more explicit. Moreover, for any time
independent function ζ in the class A of [19], it satisfies (H2) with p0 = 2, α = 1

4

and φ(s) = s−
1
4

√
1 +
√
s. In fact, according to [19, Definition 2.1], ζ is bounded

and there exists a sequence {ζn}n≥1 such that ζn ∈ C1(Rd) is uniformly bounded
and converges to ζ locally in L1(Rd), and there exists K > 0 such that

sup
n≥1, a∈Rd

∫
Rd
‖∇ζn(x+ a)‖ e

− |x|
2

s

s(d−1)/2
dx ≤ K(1 +

√
s). (2.3)

Noting that

sup
x≥0

(xγ
′
e−γx

2

) =
( γ′

2 e γ

)γ′/2
, γ′, γ > 0, (2.4)
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we then obtain from (2.3) and (2.4) that∫
Rd×Rd

|ζ(x)− ζ(y)|2 e
− |x−z|

2

s
− |x−y|

2

r

(sr)
d
2

dxdy

≤ ‖ζ‖∞ lim
n→+∞

∫
Rd×Rd

|ζn(x)− ζn(y)|e
− |x−z|

2

s
− |x−y|

2

r

(sr)
d
2

dxdy

= ‖ζ‖∞ lim
n→+∞

∫ 1

0

∫
Rd×Rd

‖∇y−xζn(x+ θ(y − x))‖e
− |x−z|

2

s
− |x−y|

2

r

(sr)
d
2

dxdydθ

≤ ‖ζ‖∞ lim
n→+∞

∫ 1

0

(∫
Rd

(∫
Rd
‖∇ζn(x+ θh+ z)‖e

− |x|
2

s

sd/2
dx

)
|h|e

−|h|2
r

r
d
2

dh

)
dθ

≤ ‖ζ‖∞
∫
Rd
Ks−

1
2 (1 +

√
s)
|h|e

−|h|2
r

r
d
2

dh

≤ C‖ζ‖∞s−
1
2 (1 +

√
s)r

1
2 ,

where the constant C is independent of z. The class A used in [21] allows
functions in A can be just exponentially bounded. However, they assume that
the drift is only sublinear growth. There is no example showing that the class
A used in [21] can contain functions which are more irregular than functions in
A of [19].

2.2 Illustrative examples

In this subsection, we give several examples to illustrate the condition (H2) and
the order of the convergence rate α. Before our concrete examples, we give some
comments on (H2). According to the proof of Theorem 2.1, X

(δ)
t and Xt are

weak solutions of the equation Yt = X0 + σWt in suitable probability spaces.
By using the Girsanov transformation, the error between X

(δ)
t and Xt mainly

comes from the following term∣∣∣ ∫ T

0

〈σ−1(b(Ys)− b(Ysδ)), dWs〉
∣∣∣.

Since Yt is a Gaussian process, (H2) is convenient to estimate the above stochas-
tic integral, see (3.20) and the proof of Lemma 3.3 for more details. Comparing
with the definition of Besov space (see [24, (1.13)]), we call functions satisfying
(H2) the Gaussian-Besov class. The exponential terms in the integrand of (H2)
allow that b can grow to infinity as |x| increases.

Example 2.2. If b is the Hölder continuous with exponent β, i.e.

|b(y)− b(x)| ≤ L|x− y|β,

then (H2) holds with α = β
2

and a constant function φ(s). It is clear that b has

sublinear growth if β < 1. Then for any T > 0, (2.1) holds with α = β
2
.
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Proof. By the Hölder continuity and (2.4), the assertion follows from the fol-
lowing inequality

sup
z∈Rd

∫
Rd×Rd

|b(y)− b(x)|p0 e−
|x−z|2
s
− |y−x|

2

r

s
d
2 r

d
2

dxdy

≤ Lp0 sup
z∈Rd

∫
Rd×Rd

|y − x|βp0 e−
|x−z|2
s
− |y−x|

2

r

s
d
2 r

d
2

dxdy

≤ Lp0
1

s
d
2 r

d
2

(
βp0r

e

)βp0
2

sup
z∈Rd

∫
Rd×Rd

e−
|x−z|2
s e−

|y−x|2
2r dxdy

≤ CLp0
(
βp0r

e

)βp0
2

.

The following example shows that (H2) can hold even if the drift term b is
not piecewise continuous.

Example 2.3. Let A be the Smith-Volterra-Cantor set on [0, 1], which is con-
structed in the following way. The first step, we let I1,1 =

(
3
8
, 5
8

)
, J1,1 =

[
0, 3

8

]
,

J1,2 = [5
8
, 1] and remove the open interval I1,1 from [0, 1]. The second step, we

remove the middle 1
42

open intervals, denoting by I2,1 and I2,2, from J1,1 and J1,2
respectively, i.e. I2,1 =

(
5
32
, 7
32

)
, I2,2 =

(
25
32
, 27
32

)
. The intervals left are denoted

by J2,1, J2,2, J2,3, J2,4, i.e.

J2,1 =

[
0,

5

32

]
, J2,2 =

[
7

32
,
3

8

]
, J2,3 =

[
5

8
,
25

32

]
, J2,4 =

[
27

32
, 1

]
.

For the n-th step, we remove the middle 1
4n

open intervals In,1, · · · , In,2n−1

from Jn−1,1, · · · , Jn−1,2n−1 respectively, and the intervals left are denoted by
Jn,1, · · · , Jn,2n. Let

A =
∞⋂
n=1

(
2n⋃
k=1

Jn,k

)
.

Then A is a nowhere dense set and the Lebesgue measure of A is 1/2. Define

b(x) = 1[0,1](x)−
∞∑
n=1

2n−1∑
j=1

2−(n+j)1In,j(x)

= 1A(x) +
∞∑
n=1

2n−1∑
j=1

(
1− 2−(n+j)

)
1In,j(x).

All of the endpoints of the intervals Īn,j are the discontinuous points of b, which
is dense in A. For any interval I ⊂ [0, 1] such that I ∩ A 6= ∅, it always
contains the discontinuous points of b. However, any interval I ⊂ [0, 1] such
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that I∩A = ∅, it is a subset of some In,j. Hence, b is not a piecewise continuous
function. In the following, we shall show that b satisfies condition (H2) with

p0 = 2 and α = 1
4

and φ(s) = Cs−
1
4 .

Proof. For u > 0 and any interval (a1, a2) (it is similar for [a1, a2]),∫ +∞

−∞

∣∣1(a1,a2)(x+ u)− 1(a1,a2)(x)
∣∣2 dx

=

∫ a2−u

a1−u
1(a1,a2)c(x)dx+

∫ a2

a1

1(a1−u,a2−u)c(x)dx

=

∫ (a2−u)∧a1

a1−u
dx+

∫ a2

(a2−u)∨a1
dx

≤ 2 (|u| ∧ (a2 − a1)) .

For u < 0, we obtain that∫ +∞

−∞

∣∣1(a1,a2)(x+ u)− 1(a1,a2)(x)
∣∣2 dx

=

∫ +∞

−∞

∣∣1(a1,a2)(v)− 1(a1,a2)(v − u)
∣∣2 dv ≤ 2 (|u| ∧ (a2 − a1)) .

Hence, it follows from Jensen’s inequality that∫ +∞

−∞
|b(x+ u)− b(x)|2dx

≤
∫ +∞

−∞

( ∣∣1[0,1](x+ u)− 1[0,1](x)
∣∣

+
+∞∑
n=1

2n−1∑
j=1

2−(n+j)
∣∣1In,j(x+ z)− 1In,j(x)

∣∣ )2dx
≤

(
1 +

+∞∑
n=1

2n−1∑
j=1

2−(n+j)

){∫ +∞

−∞

∣∣1[0,1](x+ u)− 1[0,1](x)
∣∣2 dx

+
+∞∑
n=1

2n−1∑
j=1

2−(n+j)
∫ +∞

−∞

∣∣1In,j(x+ u)− 1In,j(x)
∣∣2 dx

}

≤ 2

(
1 +

∞∑
n=1

2n−1∑
j=1

2−(n+j)

)2

|u| = 4|u|.

Combining this with (2.4), we obtain that

sup
z∈R

∫
R×R
|b(y)− b(x)|2 e−

|x−z|2
s e−

|y−x|2
r

s
1
2 r

1
2

dxdy
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≤ 1

s
1
2 r

1
2

∫
R

e−
|u|2
r

∫
R
|b(x+ u)− b(x)|2dxdu

≤ 4

s
1
2 r

1
2

∫
R

e−
|u|2
r |u|du =

(
Cs−

1
4 r

1
4

)2
.

A general class of functions that satisfies (H2) is the fractional Sobolev space
W β,p(Rd), showing as follows.

Example 2.4. If there exist β > 0 and p ∈ [2,∞) ∩ (d,+∞) such that the
Gagliardo seminorm of b is finite, i.e.

[b]Wβ,p :=

(∫
Rd×Rd

|b(x)− b(y)|p

|x− y|d+βp
dxdy

) 1
p

<∞,

then (H2) holds for p0 = p with α = β
2

and φ(s) = C1s
− d

2 [b]p
Wβ,p. Hence, if b

satisfies (H1) and [b]Wβ,p <∞ with p ∈ [2,∞) ∩ (d,+∞), then (2.1) holds.

Proof. Indeed, by Hölder’s inequality and (2.4), it follows that

1

(rs)
d
2

∫
Rd×Rd

|b(y)− b(x)|p e−
|x−z|2
s
− |y−x|

2

r dxdy

=
1

(rs)
d
2

∫
Rd×Rd

|b(x)− b(y)|p

|x− y|d+βp
e−
|x−z|2
s
− |y−x|

2

r |x− y|d+βpdxdy

≤ C1s
− d

2 r
βp
2

∫
Rd×Rd

|b(x)− b(y)|p

|x− y|d+βp
e−
|x−z|2
s
− |y−x|

2

2r dxdy

≤ C1s
− d

2 r
βp
2 [b]p

Wβ,p .

3 Proof of Theorem 2.1

The key point for proving the main result is to construct a reference SDE. By
using Girsanov’s theorem, the reference SDE provides new representations of
(1.1) and its EM’s approximation SDE (1.2) under another probability mea-
sures.

We denote by Yt = x + σWt the reference SDE of (1.1). Then Yt is a time
homogenous Markov process with heat kernel w.r.t. the Lebesgue measure as
follows:

pt(x, y) =
exp

{
− 〈(σσ

∗)−1(y−x),(y−x)〉
2t

}
√

(2tπ)d det(σσ∗)
, x, y ∈ Rd. (3.1)

To prove Theorem 2.1, we give three auxiliary lemmas.
The first lemma is on the exponential estimate of |b(Yt)|. Here, we use a

weaker condition (H1’) than (H1).
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(H1’) There exist β ∈ [0, 1), nonnegative constants L1, L2 and F ≥ 0 with
F ∈ Lp1(Rd) for some p1 > d such that

|b(x)| ≤ L1 + L2|x|β + F (x). (3.2)

Lemma 3.1. Assume (H1’) holds. Then for all T, λ > 0, it holds that

E exp
{
λ

∫ T

0

|σ−1b(Ys)|2ds
}
<∞. (3.3)

Proof. Note that for any ε > 0

L1 + L2|x|β ≤ L1 + (1− β)L
1

1−β
2

(β
ε

) β
1−β + ε|x| =: L(ε) + ε|x|, (3.4)

and for any a, b, c, ε1, ε2 > 0

(a+ b+ c)2 ≤ (2 +
1

ε1
)a2 + (1 + ε1 + ε2)b

2 + (2 +
1

ε2
)c2.

Combining these with (3.2) and the Hölder inequality, we have that

E exp
{
λ

∫ T

0

|σ−1b(Ys)|2ds
}

≤ E exp
{
λ

∫ T

0

‖σ−1‖2 (L(ε) + ε|Ys|+ F (Ys))
2 ds
}

≤ E exp
{
λ

∫ T

0

‖σ−1‖2 ((L(ε) + ε|x|) + ε|Ys − x|+ F (Ys))
2 ds
}

≤ E exp
{
λ

∫ T

0

‖σ−1‖2
( (

2 + ε−11

)
(L(ε) + ε|x|)2

+ (1 + ε1 + ε2)ε
2|Ys − x|2 + (2 + ε−12 )F 2(Ys)

)
ds
}

≤ exp{λT‖σ−1‖2(L(ε) + ε|x|)2
(
2 + ε−11

)
}

×
(
E exp

{
λ(1 + ε1 + ε2)

2ε2‖σ−1‖2
∫ T

0

|Ys − x|2ds
}) 1

1+ε1+ε2

×
(
E exp

{
λ(2 + ε−12 )(1 + ε1 + ε2)

ε1 + ε2
‖σ−1‖2

∫ T

0

F 2(Ys)ds

}) ε1+ε2
1+ε1+ε2

. (3.5)

Let

I1,T = E exp

{
λ(1 + ε1 + ε2)

2ε2‖σ−1‖2
∫ T

0

|Ys − x|2ds
}
,

I2,T = E exp

{
λ(2 + ε−12 )(1 + ε1 + ε2)

ε1 + ε2
‖σ−1‖2

∫ T

0

F 2(Ys)ds

}
.
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Since F ∈ Lp1(Rd), for any 0 ≤ S ≤ T and q satisfying d
p1

+ 1
q
< 1, we obtain

that (see e.g. [12])

E
[∫ T

S

F 2(Ys)ds
∣∣∣FS

]
≤ (T − S)

1
q ‖F‖Lp1 . (3.6)

This yields the following Khasminskii’s estimate (see e.g. [27, Lemma 3.5]): for
any C > 0

E exp

{
C

∫ T

0

F 2(Ys)ds

}
<∞. (3.7)

Thus, for any λ, ε1, ε2 > 0, one has

I2,T <∞. (3.8)

For I1,T . Since ε, ε1 and ε2 are arbitrary, for any T > 0, we can choose them
sufficiently small such that

1− 2T 2(1 + ε1 + ε2)
2λε2‖σ−1‖2‖σ‖2 =: λ̂ > 0.

This, together with the Jensen inequality and the heat kernel (3.1), yields that

I1,T = E exp

{
λ(1 + ε1 + ε2)

2ε2‖σ−1‖2
∫ T

0

|Ys − x|2ds
}

≤ 1

T

∫ T

0

E exp
{
Tλ(1 + ε1 + ε2)

2ε2‖σ−1‖2|Ys − x|2
}

ds

=

∫ T

0

∫
Rd

exp
{
Tλ(1 + ε1 + ε2)

2ε2‖σ−1‖2|y|2 − |σ
−1y|2
2s

}
T
√

(2sπ)d det(σσ∗)
dyds

≤
∫ T

0

∫
Rd

exp
{
−(1−2sTλ(1+ε1+ε2)

2ε2‖σ−1‖2‖σ‖2
2s

)|σ−1y|2
}

T
√

(2sπ)d det(σσ∗)
dyds

≤
∫ T

0

∫
Rd

exp
{
−( λ̂

2s
)|σ−1y|2

}
T
√

(2sπ)d det(σσ∗)
dyds

= λ̂−
d
2 <∞. (3.9)

Plugging (3.9) and (3.8) into (3.5), then (3.3) follows.

The following lemma deals with the exponential estimate of |b(Ytδ)|, where
{Ytδ}t∈[0,T ] denotes the solution to the discrete-time EM’s scheme. The Krylov
estimate (3.6) fails for Ysδ , (see [3, Remark 2.5] or [23]). Hence, we use (H1) in
Lemma 3.2 instead of (H1’).

Lemma 3.2. Assume (H1). Then for all T > 0, λ > 0, we have

sup
0<δ<1∧T

E exp
{
λ

∫ T

0

|σ−1b(Ysδ)|2ds
}
<∞. (3.10)
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Proof. Splitting the interval [0, T ] and applying (3.4), it follows from the ele-
mentary inequality that

E exp
{
λ

∫ T

0

|σ−1b(Ysδ)|2ds
}

= E
{

exp
{
λ

∫ δ

0

|σ−1b(Ysδ)|2ds
}

exp
{
λ

∫ T

δ

|σ−1b(Ysδ)|2ds
}}

≤ exp
{
λδ‖σ−1‖2(L(ε) + εx)2

}
E exp

{
λ

∫ T

δ

‖σ−1‖2|L(ε) + εx+ ε(Ysδ − x)|2ds
}

≤ exp{λδ‖σ−1‖2(L(ε) + εx)2} exp{λ(T − δ)‖σ−1‖2(L(ε) + ε|x|)2
(
1 + ε−11

)
}

× E exp

{
λ(1 + ε1)ε

2‖σ−1‖2
∫ T

δ

|Ysδ − x|2ds
}

≤ exp{λT‖σ−1‖2(L(ε) + εx)2
(
1 + ε−11

)
}

× E exp

{
λ(1 + ε1)ε

2‖σ−1‖2
∫ T

δ

|Ysδ − x|2ds
}
. (3.11)

For any T, λ > 0, we choose ε and ε1 sufficiently small such that

1− 2T 2λ(1 + ε1)ε
2‖σ−1‖2‖σ‖2 =: λ̆ > 0.

This, together with the Jensen inequality and (3.1), yields that

E exp

{
λ(1 + ε1)ε

2‖σ−1‖2
∫ T

δ

|Ysδ − x|2ds
}

≤ 1

T − δ

∫ T

δ

E exp{(T − δ)λ(1 + ε1)ε
2‖σ−1‖2|Ysδ − x|2}ds

≤
∫ T

δ

∫
Rd

exp{(T − δ)λ(1 + ε1)ε
2‖σ−1‖2|y|2 − 〈(σσ

∗)−1y,y〉
2sδ

}
(T − δ)

√
(2πsδ)d det (σσ∗)

dyds

≤
∫ T

δ

∫
Rd

exp{(T − δ)λ(1 + ε1)ε
2‖σ−1‖2‖σ‖2|σ−1y|2 − |σ

−1y|2
2sδ
}

(T − δ)
√

(2πsδ)d det (σσ∗)
dyds

≤
∫ T

δ

∫
Rd

exp{− (1−2(T−δ)2λ(1+ε1)ε2‖σ−1‖2‖σ‖2)
2sδ

|σ−1y|2}
(T − δ)

√
(2πsδ)d det (σσ∗)

dyds

≤
∫ T

δ

∫
Rd

exp{− (1−2T 2λ(1+ε1)ε2‖σ−1‖2‖σ‖2)
2sδ

|σ−1y|2}
(T − δ)

√
(2πsδ)d det (σσ∗)

dyds

= λ̆−
d
2 <∞. (3.12)

Combining this with (3.11), we have that (3.10) holds.

Remark 3.1. According to the proofs of Lemma 3.1 and Lemma 3.2 (see es-
pecially (3.9), (3.12), and the definitions of λ̂ and λ̆), we have that ε = O(T−1)
as T → +∞. Then the constant TL2(ε) in (3.5) and (3.11) is of the order
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(1 − β)2(L
2

1+β

2 T )
1+β
1−β . Hence, for larger L

2
1+β

2 T , the closer β to 1, the greater
upper bound of (3.3) and (3.10).

Lemma 3.1 and Lemma 3.2 serve for using the Novikov condition in the
proof of Theorem 2.1. For the case that β < 1, the constant λ in both lemmas
can be arbitrary. For the case that β = 1, with ε = L2 and L(ε) = L1 in (3.4),
according to (3.9) and (3.12), one can see from the definitions of λ̂ and λ̆ that
(3.3) and (3.10) hold for λ > 0 and T > 0 satisfying the following condition

2T 2λL2
2‖σ−1‖2‖σ‖2 < 1, (3.13)

and sufficiently small ε1 and ε2.

Lemma 3.3. Assume (H2). Then there exists a constant Cσ > 0 depending on
σ only such that for all 0 < s ≤ t ≤ T we have

E|b(Yt)− b(Ys)|p0 ≤ Cσ(φ(2s‖σ‖2)(2(t− s)‖σ‖2)α)p0 . (3.14)

Proof. By the definition of reference SDE, it is easy to see that

E|b(Yt)− b(Ys)|p0 = E|b(x+ σWt)− b(x+ σWs)|p0 .

Noting that Wt −Ws and Ws are mutually independent, we obtain from (3.1)
and (H2) that

E|b(x+ σWt)− b(x+ σWs)|p0

=

∫
Rd

∫
Rd
|b(x+ y)− b(x+ z)|p0pt−s(x+ z, x+ y)ps(x, x+ z)dydz

=

∫
Rd

∫
Rd
|b(x+ y)− b(x+ z)|p0 e−

〈(σσ∗)−1(y−z),(y−z)〉
2(t−s)√

(2π(t− s))d det(σσ∗)

e−
〈(σσ∗)−1z,z〉

2s√
(2πs)d det(σσ∗)

dydz

≤ ‖σ‖2d

πd det(σσ∗)

∫
Rd

∫
Rd
|b(x+ y)− b(x+ z)|p0 e

− |y−z|2

2‖σ‖2(t−s) e
− |z|2

2‖σ‖2s

(2(t− s)‖σ‖2)d/2(2s‖σ‖2)d/2
dydz

=
‖σ‖2d

πd det(σσ∗)

∫
Rd

∫
Rd
|b(u)− b(v)|p0 e

− |u−v|2

2‖σ‖2(t−s) e
− |v−x|

2

2‖σ‖2s

(2(t− s)‖σ‖2)d/2(2s‖σ‖2)d/2
dudv

≤ sup
x∈Rd

‖σ‖2d

πd det(σσ∗)

∫
Rd

∫
Rd
|b(u)− b(v)|p0 e

− |u−v|2

2‖σ‖2(t−s) e
− |v−x|

2

2‖σ‖2s

(2(t− s)‖σ‖2)d/2(2s‖σ‖2)d/2
dudv

≤ ‖σ‖2d

πd det(σσ∗)
(φ(2s‖σ‖2)(2(t− s)‖σ‖2)α)p0 ,

which implies that (3.14) holds by taking Cσ = ‖σ‖2d
πd det(σσ∗)

.

Now, we are in position to finish the Proof of Theorem 2.1.
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Proof of Theorem 2.1. Let

Ŵt = Wt −
∫ t

0

σ−1b(Ys)ds, W̃t = Wt −
∫ t

0

σ−1b(Ysδ)ds,

R1,T = exp
{∫ T

0

〈σ−1b(Ys), dWs〉 −
1

2

∫ T

0

|σ−1b(Ys)|2ds
}
,

R2,T = exp
{∫ T

0

〈σ−1b(Ysδ), dWs〉 −
1

2

∫ T

0

∣∣σ−1b(Ysδ)∣∣2ds}.
The proof is divided into two steps:
Step (i), we shall prove that the assertion holds under (H1) and (H2).
We first show that {Ŵt}t∈[0,T ] is a Brownian motion under Q1 := R1,TP, and

{W̃t}t∈[0,T ] is a Brownian motion under Q2 := R2,TP. In view of Lemma 3.1, the

Girsanov theorem implies that {R1,t}t∈[0,T ] is a martingale and {Ŵt}t∈[0,T ] is a
Brownian motion under Q1. Similarly, it follows from Lemma 3.2 and Novikov’s
condition that {W̃t}t∈[0,T ] is a Brownian motion under Q2.

Then, we can reformulate Yt = x+ σWt as follows:

Yt = x+

∫ t

0

b(Ys)ds+ σŴt,

which means that (Yt, Ŵt) under Q1 is a weak solution of (1.1). Hence, Yt
under Q1 has the same law as Xt under P due to the pathwise uniqueness of
the solutions to (1.1) (see Remark 2.1). Similarly, reformulating Yt = x + σWt

as follows:

Yt = x+

∫ t

0

b(Ysδ)ds+ σW̃t. (3.15)

Then (Yt, W̃t) under Q2 is also a weak solution of (1.2). Hence Yt under Q2 has

the same law as X
(δ)
t under P due to the pathwise uniqueness of solutions to

the equation (1.2).
From these equivalence relations, we obtain that for any bounded and mea-

surable function f on Rd

|Ef(Xt)− Ef(X
(δ)
t )| = |EQ1f(Yt)− EQ2f(Yt)|

= E|(R1,T −R2,T )f(Yt)| ≤ ‖f‖∞E|R1,T −R2,T |.

Using the inequality | ex− ey | ≤ (ex ∨ ey)|x−y|, Hölder’s inequality and Minkowski’s
inequality, we derive from definitions of R1,T and R2,T that

E|R1,T −R2,T |

≤ E
{

(R1,T ∨R2,T )
∣∣∣ ∫ T

0

〈σ−1(b(Ys)− b(Ysδ)), dWs〉

+
1

2

∫ T

0

(
|σ−1b(Ysδ)|2 − |σ−1b(Ys)|2

)
ds
∣∣∣}
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≤ E
[
(R1,T ∨R2,T )

∣∣∣ ∫ T

0

〈σ−1(b(Ys)− b(Ysδ)), dWs〉
∣∣∣]

+
1

2
E
[
(R1,T ∨R2,T )

∣∣∣ ∫ T

0

(
|σ−1b(Ysδ)|2 − |σ−1b(Ys)|2

)
ds
∣∣∣]

≤
(
E(R1,T ∨R2,T )

p0
p0−1

) p0−1
p0

(
E
∣∣∣ ∫ T

0

〈σ−1(b(Ys)− b(Ysδ)), dWs〉
∣∣∣p0) 1

p0

+
1

2

(
E(R1,T ∨R2,T )

p0+1
p0−1

) p0−1
p0+1

(
E
∣∣∣ ∫ T

0

(
|σ−1b(Ysδ)|2 − |σ−1b(Ys)|2

)
ds
∣∣∣ p0+1

2
) 2
p0+1

≤
(
E(R1,T ∨R2,T )

p0
p0−1

) p0−1
p0

(
E
∣∣∣ ∫ T

0

〈σ−1(b(Ys)− b(Ysδ)), dWs〉
∣∣∣p0) 1

p0

+
1

2

(
E(R1,T ∨R2,T )

p0+1
p0−1

) p0−1
p0+1

∫ T

0

(
E
∣∣|σ−1b(Ysδ)|2 − |σ−1b(Ys)|2∣∣ p0+1

2

) 2
p0+1

ds

=:
(
E(R1,T ∨R2,T )

p0
p0−1

) p0−1
p0 G1,T +

1

2

(
E(R1,T ∨R2,T )

p0+1
p0−1

) p0−1
p0+1

G2,T . (3.16)

Let

Mt =

∫ t

0

〈σ−1b(Ys), dWs〉 and M̂t(q) = e2qMt−2q2〈M·〉t , q > 0.

By Lemma 3.1, for any q > 1, M̂t(q) is an exponential martingale. Then, the
Hölder inequality implies that

ER
p0
p0−1

1,T = E exp

{
p0

p0 − 1

∫ T

0

〈σ−1b(Ys), dWs〉

− p0
2(p0 − 1)

∫ T

0

|σ−1b(Ys)|2ds
}

≤
(
EM̂T (

p0
p0 − 1

)

)1/2(
E exp

{
p0(p0 + 1)

(p0 − 1)2

∫ T

0

|σ−1b(Ys)|2ds
})1/2

=

(
E exp

{
p0(p0 + 1)

(p0 − 1)2

∫ T

0

|σ−1b(Ys)|2ds
})1/2

and

ER
p0+1
p0−1

1,T ≤
(
EM̂T (

p0 + 1

p0 − 1
)

)1/2(
E exp

{
(p0 + 3)(p0 + 1)

(p0 − 1)2

∫ T

0

|σ−1b(Ys)|2ds
})1/2

=

(
E exp

{
(p0 + 3)(p0 + 1)

(p0 − 1)2

∫ T

0

|σ−1b(Ys)|2ds
})1/2

.

Then, it follows from Lemma 3.1 again that

E
(
R

p0+1
p0−1

1,T +R
p0
p0−1

1,T

)
<∞. (3.17)
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Similarly, we can prove by using Hölder’s inequality and Lemma 3.2 that

E
(
R

p0+1
p0−1

2,T +R
p0
p0−1

2,T

)
<∞. (3.18)

Since φ ∈ C((0,+∞), (0,+∞)), there is C > 0 depending on l, T, σ such
that

φ2(r) ≤ Cφ2(s), l ≤ s ≤ r ≤ 2‖σ‖2T.

Combining this with that φ is non increasing on (0, l) and
∫ l
0
φ2(s)ds < ∞,

which yields
∫ 2‖σ‖2T
0

φ2(s)ds < ∞ since φ ∈ C((0,+∞), (0,+∞)), we obtain
that

[T/δ]∑
k=1

φ2(2kδ‖σ‖2)δ ≤
[T/δ]∑
k=1

∫ (kδ)∧ l
2‖σ‖2

((k−1)δ)∧ l
2‖σ‖2

φ2(2‖σ‖2r)dr + C

∫ T

l
2‖σ‖2

φ2(2‖σ‖2r)dr

=

∫ l
2‖σ‖2

0

φ2(2‖σ‖2r)dr + C

∫ T

l
2‖σ‖2

φ2(2‖σ‖2r)dr

=
1 ∨ C
2‖σ‖2

∫ 2‖σ‖2T

0

φ2(s)ds <∞. (3.19)

This, together with the B-D-G inequality and Lemma 3.3, yields that for p0 ≥ 2

G1,T

=
(
E
∣∣∣ ∫ T

0

〈σ−1(b(Ys)− b(Ysδ)), dWs〉
∣∣∣p0)1/p0

≤
(

p0
p0 − 1

) p0
2
(
p0(p0 − 1)

2

) 1
2

‖σ−1‖
(∫ T

0

(
E|b(Ys)− b(Ysδ)|p0

) 2
p0 ds

) 1
2

≤ δα
2α‖σ‖

2d
p0

+2α‖σ−1‖
(πd det(σσ∗))

1
p0

(
p0

p0 − 1

) p0
2
(
p0(p0 − 1)

2

) 1
2 (∫ T

0

φ2(2sδ‖σ‖2)ds
) 1

2

≤ δα
√

1 ∨ C2α−
1
2‖σ‖

2d
p0

+2α−1‖σ−1‖
(πd det(σσ∗))

1
p0

(
p0

p0 − 1

) p0
2
(
p0(p0 − 1)

2

) 1
2 (∫ 2‖σ‖2T

0

φ2(s)ds
) 1

2

= CT,p0,σ,α,φδ
α. (3.20)

Noting that for any p ≥ 1, one has

E|Yt|p ≤ 2p−1
(
|x|p + (

√
t‖σ‖)pE|W1|p

)
, (3.21)

we derive from (3.4) and (3.19) that(
E|b(Ys) + b(Ysδ)|

p0(p0+1)
p0−1

) p0−1
p0(p0+1)
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≤
(
E (2L(ε) + ε(|Ys|+ |Ysδ |))

p0(p0+1)
p0−1

) p0−1
p0(p0+1)

≤ 2

{
L(ε) + 2

p20+1

p0(p0+1) ε

(
|x|+

√
T‖σ‖

(
E|W1|

p0(p0+1)
p0−1

) p0−1
p0(p0+1)

)}
=: CT,p0,σ,L(ε),ε,x.

Combining this with Lemma 3.3, (3.19) and Hölder’s inequality, we obtain

G2,T =
1

2

∫ T

0

(
E
∣∣∣|σ−1b(Ysδ)|2 − |σ−1b(Ys)|2∣∣∣ p0+1

2

) 2
p0+1

ds

≤ ‖σ
−1‖2

2

∫ T

0

(
E|b(Ys)− b(Ysδ)|

p0+1
2 |b(Ys) + b(Ysδ)|

p0+1
2

) 2
p0+1

ds

≤ ‖σ
−1‖2

2

∫ T

0

(E|b(Ys)− b(Ysδ)|p0)
1
p0

(
E|b(Ys) + b(Ysδ)|

p0(p0+1)
p0−1

) p0−1
p0(p0+1)

ds

≤ ‖σ
−1‖2

2
CT,p0,σ,L(ε),ε,x

∫ T

0

(E|b(Ys)− b(Ysδ)|p0)
1
p0 ds

≤ CT,p0,σ,L(ε),ε,φ,xδ
α, (3.22)

where

CT,p0,σ,L(ε),ε,φ,x =
1 ∨ C2α−2‖σ‖

2d
p0

+2α−2‖σ−1‖2CT,p0,σ,L(ε),ε,x
(πd det(σσ∗))

1
p0

∫ 2‖σ‖2T

0

φ(s)ds.

The desired assertion (2.1) is proved by substituting (3.17), (3.18), (3.20)
and (3.22) into (3.16). Therefore, the conclusion holds under (H1) and (H2).

Step (ii), we prove that if b satisfies the linear growth condition, then the
conclusion (2.1) holds for T satisfying (2.2).

By Remark 3.1, we have that the conclusions of Lemma 3.1 and Lemma 3.2
hold for any λ, T satisfying (3.13). By (2.2) and (p0+3)(p0+1)

(p0−1)2 > p0(p0+1)
(p0−1)2 > 1

2
, we

can choose λ = (p0+3)(p0+1)
(p0−1)2 in Lemma 3.1 and Lemma 3.2. Then, by checking

step (i), we arrive at (3.16). Moreover, (3.17) and (3.18) hold by the same
argument together with the stopping time technique. Then, we can conclude the
second conclusion from (3.20) and (3.22). The proof is therefore complete.

Remark 3.2. According to the proof of this theorem, the key point for that f in
(2.1) can only be bounded and measurable is that the distributions of X

(δ)
t and

Xt come from the same process Yt = x+ σWt. This fails for the multiplicative
noise case.
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