Journal article 1793 views 411 downloads
Modelling the behaviour of titanium alloys at high temperature for gas turbine applications
Materials Science and Engineering: A, Volume: 527, Issue: 16-17, Pages: 4365 - 4372
Swansea University Authors:
Mark Whittaker , Will Harrison
-
PDF | Accepted Manuscript
Download (867.65KB)
DOI (Published version): 10.1016/j.msea.2010.03.078
Abstract
Modelling the behaviour of titanium alloys at high temperature for gas turbine applications
| Published in: | Materials Science and Engineering: A |
|---|---|
| ISSN: | 0921-5093 |
| Published: |
2010
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa5837 |
| first_indexed |
2013-07-23T11:53:53Z |
|---|---|
| last_indexed |
2018-02-09T04:32:39Z |
| id |
cronfa5837 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2016-08-10T13:24:37.1221424</datestamp><bib-version>v2</bib-version><id>5837</id><entry>2013-09-03</entry><title>Modelling the behaviour of titanium alloys at high temperature for gas turbine applications</title><swanseaauthors><author><sid>a146c6d442cb2c466d096179f9ac97ca</sid><ORCID>0000-0002-5854-0726</ORCID><firstname>Mark</firstname><surname>Whittaker</surname><name>Mark Whittaker</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>dae59f76fa4f63123aa028abfcd2b07a</sid><ORCID>0000-0002-0380-7075</ORCID><firstname>Will</firstname><surname>Harrison</surname><name>Will Harrison</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2013-09-03</date><deptcode>EAAS</deptcode><abstract></abstract><type>Journal Article</type><journal>Materials Science and Engineering: A</journal><volume>527</volume><journalNumber>16-17</journalNumber><paginationStart>4365</paginationStart><paginationEnd>4372</paginationEnd><publisher/><issnPrint>0921-5093</issnPrint><keywords/><publishedDay>25</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2010</publishedYear><publishedDate>2010-06-25</publishedDate><doi>10.1016/j.msea.2010.03.078</doi><url/><notes>This paper was published in a leading international journal (IF: 2.0. Citations 2) and stems from a 3 year EPSRC funded programme investigating the interaction of damage mechanisms at high temperatures at stress raising features. The research offers a new methodology for predicting both fatigue crack initiation and propagation behaviour in a titanium alloy based only on stress-strain deformation behaviour. The lifing approach described is now widely used within Rolls-Royce and has been utilised for a range of in service components (Advocate, steve.williams@rolls-royce.com) and also led to a four year programme fully funded by Rolls-Royce (Total value £420k).</notes><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2016-08-10T13:24:37.1221424</lastEdited><Created>2013-09-03T06:24:56.0000000</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>M.T</firstname><surname>Whittaker</surname><order>1</order></author><author><firstname>W</firstname><surname>Harrison</surname><order>2</order></author><author><firstname>P.J</firstname><surname>Hurley</surname><order>3</order></author><author><firstname>S</firstname><surname>Williams</surname><order>4</order></author><author><firstname>Mark</firstname><surname>Whittaker</surname><orcid>0000-0002-5854-0726</orcid><order>5</order></author><author><firstname>Will</firstname><surname>Harrison</surname><orcid>0000-0002-0380-7075</orcid><order>6</order></author></authors><documents><document><filename>0005837-16052016123353.pdf</filename><originalFilename>Cronfav37.pdf</originalFilename><uploaded>2016-05-16T12:33:53.4970000</uploaded><type>Output</type><contentLength>862305</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-05-16T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
| spelling |
2016-08-10T13:24:37.1221424 v2 5837 2013-09-03 Modelling the behaviour of titanium alloys at high temperature for gas turbine applications a146c6d442cb2c466d096179f9ac97ca 0000-0002-5854-0726 Mark Whittaker Mark Whittaker true false dae59f76fa4f63123aa028abfcd2b07a 0000-0002-0380-7075 Will Harrison Will Harrison true false 2013-09-03 EAAS Journal Article Materials Science and Engineering: A 527 16-17 4365 4372 0921-5093 25 6 2010 2010-06-25 10.1016/j.msea.2010.03.078 This paper was published in a leading international journal (IF: 2.0. Citations 2) and stems from a 3 year EPSRC funded programme investigating the interaction of damage mechanisms at high temperatures at stress raising features. The research offers a new methodology for predicting both fatigue crack initiation and propagation behaviour in a titanium alloy based only on stress-strain deformation behaviour. The lifing approach described is now widely used within Rolls-Royce and has been utilised for a range of in service components (Advocate, steve.williams@rolls-royce.com) and also led to a four year programme fully funded by Rolls-Royce (Total value £420k). COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2016-08-10T13:24:37.1221424 2013-09-03T06:24:56.0000000 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering M.T Whittaker 1 W Harrison 2 P.J Hurley 3 S Williams 4 Mark Whittaker 0000-0002-5854-0726 5 Will Harrison 0000-0002-0380-7075 6 0005837-16052016123353.pdf Cronfav37.pdf 2016-05-16T12:33:53.4970000 Output 862305 application/pdf Accepted Manuscript true 2016-05-16T00:00:00.0000000 true |
| title |
Modelling the behaviour of titanium alloys at high temperature for gas turbine applications |
| spellingShingle |
Modelling the behaviour of titanium alloys at high temperature for gas turbine applications Mark Whittaker Will Harrison |
| title_short |
Modelling the behaviour of titanium alloys at high temperature for gas turbine applications |
| title_full |
Modelling the behaviour of titanium alloys at high temperature for gas turbine applications |
| title_fullStr |
Modelling the behaviour of titanium alloys at high temperature for gas turbine applications |
| title_full_unstemmed |
Modelling the behaviour of titanium alloys at high temperature for gas turbine applications |
| title_sort |
Modelling the behaviour of titanium alloys at high temperature for gas turbine applications |
| author_id_str_mv |
a146c6d442cb2c466d096179f9ac97ca dae59f76fa4f63123aa028abfcd2b07a |
| author_id_fullname_str_mv |
a146c6d442cb2c466d096179f9ac97ca_***_Mark Whittaker dae59f76fa4f63123aa028abfcd2b07a_***_Will Harrison |
| author |
Mark Whittaker Will Harrison |
| author2 |
M.T Whittaker W Harrison P.J Hurley S Williams Mark Whittaker Will Harrison |
| format |
Journal article |
| container_title |
Materials Science and Engineering: A |
| container_volume |
527 |
| container_issue |
16-17 |
| container_start_page |
4365 |
| publishDate |
2010 |
| institution |
Swansea University |
| issn |
0921-5093 |
| doi_str_mv |
10.1016/j.msea.2010.03.078 |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
| document_store_str |
1 |
| active_str |
0 |
| published_date |
2010-06-25T03:11:16Z |
| _version_ |
1851179848450441216 |
| score |
11.038833 |

