Journal article 799 views 153 downloads
VNLP: Visible natural language processing
Information Visualization, Volume: 20, Issue: 4, Pages: 245 - 262
Swansea University Authors: Mohammad Alharbi Alharbi, Matt Roach , Tom Cheesman, Bob Laramee
-
PDF | Version of Record
© The Author(s) 2021. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License
Download (3.43MB)
DOI (Published version): 10.1177/14738716211038898
Abstract
In general, Natural Language Processing (NLP) algorithms exhibit black- box behavior.Users input text and output is provided with no explanation of how the results are obtained.In order to increase understanding and trust, users value transparent processing which may explain derived results and enab...
Published in: | Information Visualization |
---|---|
ISSN: | 1473-8716 1473-8724 |
Published: |
SAGE Publications
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa57876 |
first_indexed |
2021-09-13T15:28:47Z |
---|---|
last_indexed |
2021-10-07T03:22:28Z |
id |
cronfa57876 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-10-06T14:14:26.6271273</datestamp><bib-version>v2</bib-version><id>57876</id><entry>2021-09-13</entry><title>VNLP: Visible natural language processing</title><swanseaauthors><author><sid>2c535a171da53c1407e75854f46eeb76</sid><firstname>Mohammad Alharbi</firstname><surname>Alharbi</surname><name>Mohammad Alharbi Alharbi</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>9722c301d5bbdc96e967cdc629290fec</sid><ORCID>0000-0002-1486-5537</ORCID><firstname>Matt</firstname><surname>Roach</surname><name>Matt Roach</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b7304d4beb9e6e86ed66575a61157476</sid><firstname>Tom</firstname><surname>Cheesman</surname><name>Tom Cheesman</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7737f06e2186278a925f6119c48db8b1</sid><ORCID>0000-0002-3874-6145</ORCID><firstname>Bob</firstname><surname>Laramee</surname><name>Bob Laramee</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-09-13</date><deptcode>MACS</deptcode><abstract>In general, Natural Language Processing (NLP) algorithms exhibit black- box behavior.Users input text and output is provided with no explanation of how the results are obtained.In order to increase understanding and trust, users value transparent processing which may explain derived results and enable understanding of the underlying routines.Many approaches take an opaque approach by default when designing NLP tools and do not incorporate a means to steer and manipulate the intermediate NLP steps.We present an interactive, customizable, visual framework that enables users to observe and participate in the NLP pipeline processes, explicitly manipulate the parameters of each step, and explore the result visually based on user preferences. The visible NLP (VNLP) design is applied to a text similarity application to demonstrate the utility and advantages of a visible and transparent NLP pipeline in supporting users to understand and justify both the process and results. We also report feedback on our framework from a modern languages expert.</abstract><type>Journal Article</type><journal>Information Visualization</journal><volume>20</volume><journalNumber>4</journalNumber><paginationStart>245</paginationStart><paginationEnd>262</paginationEnd><publisher>SAGE Publications</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1473-8716</issnPrint><issnElectronic>1473-8724</issnElectronic><keywords>Text alignment, parallel translations, text visualization</keywords><publishedDay>1</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-10-01</publishedDate><doi>10.1177/14738716211038898</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-10-06T14:14:26.6271273</lastEdited><Created>2021-09-13T16:25:30.6699511</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Mohammad Alharbi</firstname><surname>Alharbi</surname><order>1</order></author><author><firstname>Matt</firstname><surname>Roach</surname><orcid>0000-0002-1486-5537</orcid><order>2</order></author><author><firstname>Tom</firstname><surname>Cheesman</surname><order>3</order></author><author><firstname>Bob</firstname><surname>Laramee</surname><orcid>0000-0002-3874-6145</orcid><order>4</order></author></authors><documents><document><filename>57876__21102__612912f75a7b43e2b6f1fcbb28531b78.pdf</filename><originalFilename>57876.pdf</originalFilename><uploaded>2021-10-06T14:12:23.2782533</uploaded><type>Output</type><contentLength>3601318</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© The Author(s) 2021. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-10-06T14:14:26.6271273 v2 57876 2021-09-13 VNLP: Visible natural language processing 2c535a171da53c1407e75854f46eeb76 Mohammad Alharbi Alharbi Mohammad Alharbi Alharbi true false 9722c301d5bbdc96e967cdc629290fec 0000-0002-1486-5537 Matt Roach Matt Roach true false b7304d4beb9e6e86ed66575a61157476 Tom Cheesman Tom Cheesman true false 7737f06e2186278a925f6119c48db8b1 0000-0002-3874-6145 Bob Laramee Bob Laramee true false 2021-09-13 MACS In general, Natural Language Processing (NLP) algorithms exhibit black- box behavior.Users input text and output is provided with no explanation of how the results are obtained.In order to increase understanding and trust, users value transparent processing which may explain derived results and enable understanding of the underlying routines.Many approaches take an opaque approach by default when designing NLP tools and do not incorporate a means to steer and manipulate the intermediate NLP steps.We present an interactive, customizable, visual framework that enables users to observe and participate in the NLP pipeline processes, explicitly manipulate the parameters of each step, and explore the result visually based on user preferences. The visible NLP (VNLP) design is applied to a text similarity application to demonstrate the utility and advantages of a visible and transparent NLP pipeline in supporting users to understand and justify both the process and results. We also report feedback on our framework from a modern languages expert. Journal Article Information Visualization 20 4 245 262 SAGE Publications 1473-8716 1473-8724 Text alignment, parallel translations, text visualization 1 10 2021 2021-10-01 10.1177/14738716211038898 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2021-10-06T14:14:26.6271273 2021-09-13T16:25:30.6699511 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Mohammad Alharbi Alharbi 1 Matt Roach 0000-0002-1486-5537 2 Tom Cheesman 3 Bob Laramee 0000-0002-3874-6145 4 57876__21102__612912f75a7b43e2b6f1fcbb28531b78.pdf 57876.pdf 2021-10-06T14:12:23.2782533 Output 3601318 application/pdf Version of Record true © The Author(s) 2021. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License true eng https://creativecommons.org/licenses/by-nc/4.0/ |
title |
VNLP: Visible natural language processing |
spellingShingle |
VNLP: Visible natural language processing Mohammad Alharbi Alharbi Matt Roach Tom Cheesman Bob Laramee |
title_short |
VNLP: Visible natural language processing |
title_full |
VNLP: Visible natural language processing |
title_fullStr |
VNLP: Visible natural language processing |
title_full_unstemmed |
VNLP: Visible natural language processing |
title_sort |
VNLP: Visible natural language processing |
author_id_str_mv |
2c535a171da53c1407e75854f46eeb76 9722c301d5bbdc96e967cdc629290fec b7304d4beb9e6e86ed66575a61157476 7737f06e2186278a925f6119c48db8b1 |
author_id_fullname_str_mv |
2c535a171da53c1407e75854f46eeb76_***_Mohammad Alharbi Alharbi 9722c301d5bbdc96e967cdc629290fec_***_Matt Roach b7304d4beb9e6e86ed66575a61157476_***_Tom Cheesman 7737f06e2186278a925f6119c48db8b1_***_Bob Laramee |
author |
Mohammad Alharbi Alharbi Matt Roach Tom Cheesman Bob Laramee |
author2 |
Mohammad Alharbi Alharbi Matt Roach Tom Cheesman Bob Laramee |
format |
Journal article |
container_title |
Information Visualization |
container_volume |
20 |
container_issue |
4 |
container_start_page |
245 |
publishDate |
2021 |
institution |
Swansea University |
issn |
1473-8716 1473-8724 |
doi_str_mv |
10.1177/14738716211038898 |
publisher |
SAGE Publications |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
description |
In general, Natural Language Processing (NLP) algorithms exhibit black- box behavior.Users input text and output is provided with no explanation of how the results are obtained.In order to increase understanding and trust, users value transparent processing which may explain derived results and enable understanding of the underlying routines.Many approaches take an opaque approach by default when designing NLP tools and do not incorporate a means to steer and manipulate the intermediate NLP steps.We present an interactive, customizable, visual framework that enables users to observe and participate in the NLP pipeline processes, explicitly manipulate the parameters of each step, and explore the result visually based on user preferences. The visible NLP (VNLP) design is applied to a text similarity application to demonstrate the utility and advantages of a visible and transparent NLP pipeline in supporting users to understand and justify both the process and results. We also report feedback on our framework from a modern languages expert. |
published_date |
2021-10-01T14:13:03Z |
_version_ |
1821415081966043136 |
score |
11.048237 |