No Cover Image

Journal article 730 views 114 downloads

Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation

Michael Allen, Morgan McKee, Frank Marken, Moritz Kuehnel

Energy & Environmental Science, Volume: 2021, Issue: 10

Swansea University Authors: Michael Allen, Morgan McKee, Moritz Kuehnel

  • 57689.VOR.pdf

    PDF | Version of Record

    This Open Access Article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC-BY).

    Download (2.84MB)

Check full text

DOI (Published version): 10.1039/d1ee01822a

Abstract

Solar water splitting into H2and O2is a promising approach to provide renewable fuels. However, the presence of O2 hampers H2 generation and most photocatalysts show a major drop in activity in air without synthetic modification. Here, we demonstrate efficient H2evolution in air, simply enabled by c...

Full description

Published in: Energy & Environmental Science
ISSN: 1754-5692 1754-5706
Published: Royal Society of Chemistry (RSC) 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa57689
first_indexed 2021-09-21T14:16:01Z
last_indexed 2021-11-11T04:24:36Z
id cronfa57689
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><datestamp>2021-11-10T10:12:25.2169854</datestamp><bib-version>v2</bib-version><id>57689</id><entry>2021-08-25</entry><title>Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation</title><swanseaauthors><author><sid>740a38eee8038c6cb4a9eb30d147db87</sid><firstname>Michael</firstname><surname>Allen</surname><name>Michael Allen</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>bfcf92a866f716f543b92d2f8339c7ec</sid><firstname>Morgan</firstname><surname>McKee</surname><name>Morgan McKee</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>210dbad181ce095d6f8bf2bd1d616d4e</sid><firstname>Moritz</firstname><surname>Kuehnel</surname><name>Moritz Kuehnel</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-08-25</date><abstract>Solar water splitting into H2and O2is a promising approach to provide renewable fuels. However, the presence of O2 hampers H2 generation and most photocatalysts show a major drop in activity in air without synthetic modification. Here, we demonstrate efficient H2evolution in air, simply enabled by controlling O2 diffusion in the solvent. We show that in deep eutectic solvents (DESs), photocatalysts retain up to 97% of their H2 evolution activity and quantum efficiency under aerobic conditions whereas in water, the same catalysts are almost entirely quenched. Solvent-induced O2tolerance is achieved by H2 generation outcompeting O2-induced quenching due to low O2 diffusivities in DESs combined with low O2 solubilities. Using this mechanism, we derive design rules and demonstrate that applying these rules to H2 generation in water can enhance O2 tolerance to &gt;34%. The simplicity and generality of this approach paves the way for enhancing water splitting without adding complexity.</abstract><type>Journal Article</type><journal>Energy &amp; Environmental Science</journal><volume>2021</volume><journalNumber>10</journalNumber><paginationStart/><paginationEnd/><publisher>Royal Society of Chemistry (RSC)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1754-5692</issnPrint><issnElectronic>1754-5706</issnElectronic><keywords>Renewable fuels, green hydrogen, solar water splitting</keywords><publishedDay>31</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-08-31</publishedDate><doi>10.1039/d1ee01822a</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>External research funder(s) paid the OA fee (includes OA grants disbursed by the Library)</apcterm><funders>EPSRC DTA Grant, EPSRC Capital investment grant</funders><projectreference>EP/R51312X/1, EP/S017925/1</projectreference><lastEdited>2021-11-10T10:12:25.2169854</lastEdited><Created>2021-08-25T15:59:23.4707488</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemistry</level></path><authors><author><firstname>Michael</firstname><surname>Allen</surname><order>1</order></author><author><firstname>Morgan</firstname><surname>McKee</surname><order>2</order></author><author><firstname>Frank</firstname><surname>Marken</surname><order>3</order></author><author><firstname>Moritz</firstname><surname>Kuehnel</surname><order>4</order></author></authors><documents><document><filename>57689__20957__753d45d365e446978d8efe32670fe569.pdf</filename><originalFilename>57689.VOR.pdf</originalFilename><uploaded>2021-09-21T15:14:51.4905463</uploaded><type>Output</type><contentLength>2973507</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This Open Access Article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/3.0/</licence></document></documents><OutputDurs><OutputDur><Id>88</Id><DataControllerName>Allan, Michael G; McKee, Morgan J; Marken, Frank; Kuehnel, Moritz F</DataControllerName><IsDataAvailableOnline>true</IsDataAvailableOnline><DataNotAvailableOnlineReasonId xsi:nil="true"/><DurUrl>https://zenodo.org/record/5236823#.YUnptbhKi70</DurUrl><IsDurRestrictions>false</IsDurRestrictions><DurRestrictionReasonId xsi:nil="true"/><DurEmbargoDate xsi:nil="true"/></OutputDur></OutputDurs></rfc1807>
spelling 2021-11-10T10:12:25.2169854 v2 57689 2021-08-25 Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation 740a38eee8038c6cb4a9eb30d147db87 Michael Allen Michael Allen true false bfcf92a866f716f543b92d2f8339c7ec Morgan McKee Morgan McKee true false 210dbad181ce095d6f8bf2bd1d616d4e Moritz Kuehnel Moritz Kuehnel true false 2021-08-25 Solar water splitting into H2and O2is a promising approach to provide renewable fuels. However, the presence of O2 hampers H2 generation and most photocatalysts show a major drop in activity in air without synthetic modification. Here, we demonstrate efficient H2evolution in air, simply enabled by controlling O2 diffusion in the solvent. We show that in deep eutectic solvents (DESs), photocatalysts retain up to 97% of their H2 evolution activity and quantum efficiency under aerobic conditions whereas in water, the same catalysts are almost entirely quenched. Solvent-induced O2tolerance is achieved by H2 generation outcompeting O2-induced quenching due to low O2 diffusivities in DESs combined with low O2 solubilities. Using this mechanism, we derive design rules and demonstrate that applying these rules to H2 generation in water can enhance O2 tolerance to >34%. The simplicity and generality of this approach paves the way for enhancing water splitting without adding complexity. Journal Article Energy & Environmental Science 2021 10 Royal Society of Chemistry (RSC) 1754-5692 1754-5706 Renewable fuels, green hydrogen, solar water splitting 31 8 2021 2021-08-31 10.1039/d1ee01822a COLLEGE NANME COLLEGE CODE Swansea University External research funder(s) paid the OA fee (includes OA grants disbursed by the Library) EPSRC DTA Grant, EPSRC Capital investment grant EP/R51312X/1, EP/S017925/1 2021-11-10T10:12:25.2169854 2021-08-25T15:59:23.4707488 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemistry Michael Allen 1 Morgan McKee 2 Frank Marken 3 Moritz Kuehnel 4 57689__20957__753d45d365e446978d8efe32670fe569.pdf 57689.VOR.pdf 2021-09-21T15:14:51.4905463 Output 2973507 application/pdf Version of Record true This Open Access Article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC-BY). true eng http://creativecommons.org/licenses/by/3.0/ 88 Allan, Michael G; McKee, Morgan J; Marken, Frank; Kuehnel, Moritz F true https://zenodo.org/record/5236823#.YUnptbhKi70 false
title Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation
spellingShingle Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation
Michael Allen
Morgan McKee
Moritz Kuehnel
title_short Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation
title_full Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation
title_fullStr Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation
title_full_unstemmed Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation
title_sort Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation
author_id_str_mv 740a38eee8038c6cb4a9eb30d147db87
bfcf92a866f716f543b92d2f8339c7ec
210dbad181ce095d6f8bf2bd1d616d4e
author_id_fullname_str_mv 740a38eee8038c6cb4a9eb30d147db87_***_Michael Allen
bfcf92a866f716f543b92d2f8339c7ec_***_Morgan McKee
210dbad181ce095d6f8bf2bd1d616d4e_***_Moritz Kuehnel
author Michael Allen
Morgan McKee
Moritz Kuehnel
author2 Michael Allen
Morgan McKee
Frank Marken
Moritz Kuehnel
format Journal article
container_title Energy & Environmental Science
container_volume 2021
container_issue 10
publishDate 2021
institution Swansea University
issn 1754-5692
1754-5706
doi_str_mv 10.1039/d1ee01822a
publisher Royal Society of Chemistry (RSC)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Chemistry{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemistry
document_store_str 1
active_str 0
description Solar water splitting into H2and O2is a promising approach to provide renewable fuels. However, the presence of O2 hampers H2 generation and most photocatalysts show a major drop in activity in air without synthetic modification. Here, we demonstrate efficient H2evolution in air, simply enabled by controlling O2 diffusion in the solvent. We show that in deep eutectic solvents (DESs), photocatalysts retain up to 97% of their H2 evolution activity and quantum efficiency under aerobic conditions whereas in water, the same catalysts are almost entirely quenched. Solvent-induced O2tolerance is achieved by H2 generation outcompeting O2-induced quenching due to low O2 diffusivities in DESs combined with low O2 solubilities. Using this mechanism, we derive design rules and demonstrate that applying these rules to H2 generation in water can enhance O2 tolerance to >34%. The simplicity and generality of this approach paves the way for enhancing water splitting without adding complexity.
published_date 2021-08-31T08:04:12Z
_version_ 1821391875910664192
score 11.047804