No Cover Image

Journal article 159 views 48 downloads

Facile Synthesis of Gram-Scale Mesoporous Ag/TiO<sub>2</sub> Photocatalysts for Pharmaceutical Water Pollutant Removal and Green Hydrogen Generation

Yassine Cherif, Hajer Azzi, Kishore Sridharan Orcid Logo, Seulgi Ji, Heechae Choi Orcid Logo, Michael G. Allan, Sihem Benaissa, Karima Saidi-Bendahou, Lois Damptey, Camila Silva Ribeiro, Satheesh Krishnamurthy Orcid Logo, Sanjay Nagarajan Orcid Logo, M. Mercedes Maroto-Valer, Moritz Kuehnel, Sudhagar Pitchaimuthu Orcid Logo

ACS Omega, Volume: 8, Issue: 1, Pages: 1249 - 1261

Swansea University Authors: Moritz Kuehnel, Sudhagar Pitchaimuthu Orcid Logo

  • 65137_MKuehnel.pdf

    PDF | Version of Record

    © 2022 The Authors. Released under the terms of a Creative Commons Attribution License.

    Download (11.09MB)

Abstract

This work demonstrates a two-step gram-scale synthesis of presynthesized silver (Ag) nanoparticles impregnated with mesoporous TiO2 and evaluates their feasibility for wastewater treatment and hydrogen gas generation under natural sunlight. Paracetamol was chosen as the model pharmaceutical pollutan...

Full description

Published in: ACS Omega
ISSN: 2470-1343 2470-1343
Published: American Chemical Society (ACS) 2023
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa65137
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: This work demonstrates a two-step gram-scale synthesis of presynthesized silver (Ag) nanoparticles impregnated with mesoporous TiO2 and evaluates their feasibility for wastewater treatment and hydrogen gas generation under natural sunlight. Paracetamol was chosen as the model pharmaceutical pollutant for evaluating photocatalytic performance. A systematic material analysis (morphology, chemical environment, optical bandgap energy) of the Ag/TiO2 photocatalyst powder was carried out, and the influence of material properties on the performance is discussed in detail. The experimental results showed that the decoration of anatase TiO2 nanoparticles (size between 80 and 100 nm) with 5 nm Ag nanoparticles (1 wt %) induced visible-light absorption and enhanced charge carrier separation. As a result, 0.01 g/L Ag/TiO2 effectively removed 99% of 0.01 g/L paracetamol in 120 min and exhibited 60% higher photocatalytic removal than pristine TiO2. Alongside paracetamol degradation, Ag/TiO2 led to the generation of 1729 μmol H2 g–1 h–1. This proof-of-concept approach for tandem pollutant degradation and hydrogen generation was further evaluated with rare earth metal (lanthanum)- and nonmetal (nitrogen)-doped TiO2, which also showed a positive response. Using a combination of ab initio calculations and our new theory model, we revealed that the enhanced photocatalytic performance of Ag/TiO2 was due to the surface Fermi-level change of TiO2 and lowered surface reaction energy barrier for water pollutant oxidation. This work opens new opportunities for exploiting tandem photocatalytic routes beyond water splitting and understanding the simultaneous reactions in metal-doped metal oxide photocatalyst systems under natural sunlight.
Keywords: Degradation, Environmental pollution, Hydrogen, Oxides, Photocatalysts
College: Faculty of Science and Engineering
Funders: The authorsY.C. and H.J. wouldlike to thankthe AlgerianDGRST-MESRSand the Universityof Tlemcenfor financialsupport.SP thanksHeriot-WattUniversityfor the Seed Grantsupport.S.J. and H.C. thankthe Universityof Cologneand theExcellenceCluster“QuantumMatterand Materials”for theinfrastructuralsupport.S.K. acknowledgesthe RoyalAcademyof EngineeringNewtonFundand EuropeanCommissionprojectid: 958491�Smartinnovativesystemfor recyclingwastewaterand creatingclosedloopsin textilemanufacturingindustrialprocesses.
Issue: 1
Start Page: 1249
End Page: 1261