Journal article 896 views 157 downloads
Development of arsenic doped Cd(Se,Te) absorbers by MOCVD for thin film solar cells
Solar Energy Materials and Solar Cells, Volume: 231, Start page: 111325
Swansea University Authors: Ochai Oklobia, Giray Kartopu, Harrison Lee, Wing Chung Tsoi , Stuart Irvine
-
PDF | Version of Record
© 2021 The Authors. This is an open access article under the CC BY-NC-ND license
Download (9.42MB)
DOI (Published version): 10.1016/j.solmat.2021.111325
Abstract
Recent developments in CdTe solar cell technology have included the incorporation of ternary alloy Cd(Se,Te) in the devices. CdTe absorber band gap grading due to Se alloying contributes to current density enhancement and can result in device performance improvement. Here we report Cd(Se,Te) polycry...
Published in: | Solar Energy Materials and Solar Cells |
---|---|
ISSN: | 0927-0248 |
Published: |
Elsevier BV
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa57656 |
first_indexed |
2021-08-19T08:56:31Z |
---|---|
last_indexed |
2023-01-11T14:37:43Z |
id |
cronfa57656 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-08-15T18:24:26.4280723</datestamp><bib-version>v2</bib-version><id>57656</id><entry>2021-08-19</entry><title>Development of arsenic doped Cd(Se,Te) absorbers by MOCVD for thin film solar cells</title><swanseaauthors><author><sid>d447e8d0345473fa625813546bccc592</sid><firstname>Ochai</firstname><surname>Oklobia</surname><name>Ochai Oklobia</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>5c4917e0a29801844ec31737672f930c</sid><firstname>Giray</firstname><surname>Kartopu</surname><name>Giray Kartopu</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>0ef65494d0dda7f6aea5ead8bb6ce466</sid><ORCID/><firstname>Harrison</firstname><surname>Lee</surname><name>Harrison Lee</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7e5f541df6635a9a8e1a579ff2de5d56</sid><ORCID>0000-0003-3836-5139</ORCID><firstname>Wing Chung</firstname><surname>Tsoi</surname><name>Wing Chung Tsoi</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1ddb966eccef99aa96e87f1ea4917f1f</sid><firstname>Stuart</firstname><surname>Irvine</surname><name>Stuart Irvine</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-08-19</date><deptcode>EAAS</deptcode><abstract>Recent developments in CdTe solar cell technology have included the incorporation of ternary alloy Cd(Se,Te) in the devices. CdTe absorber band gap grading due to Se alloying contributes to current density enhancement and can result in device performance improvement. Here we report Cd(Se,Te) polycrystalline thin films grown by a chamberless inline atmospheric pressure metal organic chemical vapour deposition technique, with subsequent incorporation in CdTe solar cells. The compositional dependence of the crystal structure and optical properties of Cd(Se,Te) are examined. Selenium graded Cd(Se,Te)/CdTe absorber structure in devices are demonstrated using either a single CdSe layer or CdSe/Cd(Se,Te) bilayer (with or without As doping in the Cd(Se,Te) layer). Cross-sectional TEM/EDS, photoluminescence spectra and secondary ion mass spectroscopy analysis confirmed the formation of a graded Se profile toward the back contact with a diffusion length of ~1.5 μm and revealed back-diffusion of Group V (As) dopants from the CdTe layer into Cd(Se,Te) grains. Due to the strong Se/Te interdiffusion, CdSe in the Se bilayer configuration was unable to form an n-type emitter layer in processed devices. In situ As doping of the Cd(Se,Te) layer benefited the device junction quality with current density reaching 28.3 mA/cm2. The results provide useful insights for the optimisation of Cd(Se,Te)/CdTe solar cells.</abstract><type>Journal Article</type><journal>Solar Energy Materials and Solar Cells</journal><volume>231</volume><journalNumber/><paginationStart>111325</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0927-0248</issnPrint><issnElectronic/><keywords>CdTe, CdSe, Cd(Se,Te), Thin film, As doping, MOCVD, Solar cells, Photovoltaics</keywords><publishedDay>1</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-10-01</publishedDate><doi>10.1016/j.solmat.2021.111325</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>WEFO, Engineering and Physical Science Research Council (EP/N020863/1), Innovate UK (920036) , European Regional Development Fund (c80892), U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office under contract number 34353.</funders><projectreference/><lastEdited>2022-08-15T18:24:26.4280723</lastEdited><Created>2021-08-19T09:55:03.5475242</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Ochai</firstname><surname>Oklobia</surname><order>1</order></author><author><firstname>Giray</firstname><surname>Kartopu</surname><order>2</order></author><author><firstname>S.</firstname><surname>Jones</surname><order>3</order></author><author><firstname>P.</firstname><surname>Siderfin</surname><order>4</order></author><author><firstname>B.</firstname><surname>Grew</surname><order>5</order></author><author><firstname>Harrison</firstname><surname>Lee</surname><orcid/><order>6</order></author><author><firstname>Wing Chung</firstname><surname>Tsoi</surname><orcid>0000-0003-3836-5139</orcid><order>7</order></author><author><firstname>Ali</firstname><surname>Abbas</surname><order>8</order></author><author><firstname>J.M.</firstname><surname>Walls</surname><order>9</order></author><author><firstname>D.L.</firstname><surname>McGott</surname><order>10</order></author><author><firstname>M.O.</firstname><surname>Reese</surname><order>11</order></author><author><firstname>Stuart</firstname><surname>Irvine</surname><order>12</order></author></authors><documents><document><filename>57656__20896__b6490d56647c4c3798b9375870e246f2.pdf</filename><originalFilename>57656_VoR.pdf</originalFilename><uploaded>2021-09-16T16:22:59.6076983</uploaded><type>Output</type><contentLength>9874148</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2021 The Authors. This is an open access article under the CC BY-NC-ND license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-08-15T18:24:26.4280723 v2 57656 2021-08-19 Development of arsenic doped Cd(Se,Te) absorbers by MOCVD for thin film solar cells d447e8d0345473fa625813546bccc592 Ochai Oklobia Ochai Oklobia true false 5c4917e0a29801844ec31737672f930c Giray Kartopu Giray Kartopu true false 0ef65494d0dda7f6aea5ead8bb6ce466 Harrison Lee Harrison Lee true false 7e5f541df6635a9a8e1a579ff2de5d56 0000-0003-3836-5139 Wing Chung Tsoi Wing Chung Tsoi true false 1ddb966eccef99aa96e87f1ea4917f1f Stuart Irvine Stuart Irvine true false 2021-08-19 EAAS Recent developments in CdTe solar cell technology have included the incorporation of ternary alloy Cd(Se,Te) in the devices. CdTe absorber band gap grading due to Se alloying contributes to current density enhancement and can result in device performance improvement. Here we report Cd(Se,Te) polycrystalline thin films grown by a chamberless inline atmospheric pressure metal organic chemical vapour deposition technique, with subsequent incorporation in CdTe solar cells. The compositional dependence of the crystal structure and optical properties of Cd(Se,Te) are examined. Selenium graded Cd(Se,Te)/CdTe absorber structure in devices are demonstrated using either a single CdSe layer or CdSe/Cd(Se,Te) bilayer (with or without As doping in the Cd(Se,Te) layer). Cross-sectional TEM/EDS, photoluminescence spectra and secondary ion mass spectroscopy analysis confirmed the formation of a graded Se profile toward the back contact with a diffusion length of ~1.5 μm and revealed back-diffusion of Group V (As) dopants from the CdTe layer into Cd(Se,Te) grains. Due to the strong Se/Te interdiffusion, CdSe in the Se bilayer configuration was unable to form an n-type emitter layer in processed devices. In situ As doping of the Cd(Se,Te) layer benefited the device junction quality with current density reaching 28.3 mA/cm2. The results provide useful insights for the optimisation of Cd(Se,Te)/CdTe solar cells. Journal Article Solar Energy Materials and Solar Cells 231 111325 Elsevier BV 0927-0248 CdTe, CdSe, Cd(Se,Te), Thin film, As doping, MOCVD, Solar cells, Photovoltaics 1 10 2021 2021-10-01 10.1016/j.solmat.2021.111325 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University WEFO, Engineering and Physical Science Research Council (EP/N020863/1), Innovate UK (920036) , European Regional Development Fund (c80892), U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office under contract number 34353. 2022-08-15T18:24:26.4280723 2021-08-19T09:55:03.5475242 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Ochai Oklobia 1 Giray Kartopu 2 S. Jones 3 P. Siderfin 4 B. Grew 5 Harrison Lee 6 Wing Chung Tsoi 0000-0003-3836-5139 7 Ali Abbas 8 J.M. Walls 9 D.L. McGott 10 M.O. Reese 11 Stuart Irvine 12 57656__20896__b6490d56647c4c3798b9375870e246f2.pdf 57656_VoR.pdf 2021-09-16T16:22:59.6076983 Output 9874148 application/pdf Version of Record true © 2021 The Authors. This is an open access article under the CC BY-NC-ND license true eng http://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
Development of arsenic doped Cd(Se,Te) absorbers by MOCVD for thin film solar cells |
spellingShingle |
Development of arsenic doped Cd(Se,Te) absorbers by MOCVD for thin film solar cells Ochai Oklobia Giray Kartopu Harrison Lee Wing Chung Tsoi Stuart Irvine |
title_short |
Development of arsenic doped Cd(Se,Te) absorbers by MOCVD for thin film solar cells |
title_full |
Development of arsenic doped Cd(Se,Te) absorbers by MOCVD for thin film solar cells |
title_fullStr |
Development of arsenic doped Cd(Se,Te) absorbers by MOCVD for thin film solar cells |
title_full_unstemmed |
Development of arsenic doped Cd(Se,Te) absorbers by MOCVD for thin film solar cells |
title_sort |
Development of arsenic doped Cd(Se,Te) absorbers by MOCVD for thin film solar cells |
author_id_str_mv |
d447e8d0345473fa625813546bccc592 5c4917e0a29801844ec31737672f930c 0ef65494d0dda7f6aea5ead8bb6ce466 7e5f541df6635a9a8e1a579ff2de5d56 1ddb966eccef99aa96e87f1ea4917f1f |
author_id_fullname_str_mv |
d447e8d0345473fa625813546bccc592_***_Ochai Oklobia 5c4917e0a29801844ec31737672f930c_***_Giray Kartopu 0ef65494d0dda7f6aea5ead8bb6ce466_***_Harrison Lee 7e5f541df6635a9a8e1a579ff2de5d56_***_Wing Chung Tsoi 1ddb966eccef99aa96e87f1ea4917f1f_***_Stuart Irvine |
author |
Ochai Oklobia Giray Kartopu Harrison Lee Wing Chung Tsoi Stuart Irvine |
author2 |
Ochai Oklobia Giray Kartopu S. Jones P. Siderfin B. Grew Harrison Lee Wing Chung Tsoi Ali Abbas J.M. Walls D.L. McGott M.O. Reese Stuart Irvine |
format |
Journal article |
container_title |
Solar Energy Materials and Solar Cells |
container_volume |
231 |
container_start_page |
111325 |
publishDate |
2021 |
institution |
Swansea University |
issn |
0927-0248 |
doi_str_mv |
10.1016/j.solmat.2021.111325 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Recent developments in CdTe solar cell technology have included the incorporation of ternary alloy Cd(Se,Te) in the devices. CdTe absorber band gap grading due to Se alloying contributes to current density enhancement and can result in device performance improvement. Here we report Cd(Se,Te) polycrystalline thin films grown by a chamberless inline atmospheric pressure metal organic chemical vapour deposition technique, with subsequent incorporation in CdTe solar cells. The compositional dependence of the crystal structure and optical properties of Cd(Se,Te) are examined. Selenium graded Cd(Se,Te)/CdTe absorber structure in devices are demonstrated using either a single CdSe layer or CdSe/Cd(Se,Te) bilayer (with or without As doping in the Cd(Se,Te) layer). Cross-sectional TEM/EDS, photoluminescence spectra and secondary ion mass spectroscopy analysis confirmed the formation of a graded Se profile toward the back contact with a diffusion length of ~1.5 μm and revealed back-diffusion of Group V (As) dopants from the CdTe layer into Cd(Se,Te) grains. Due to the strong Se/Te interdiffusion, CdSe in the Se bilayer configuration was unable to form an n-type emitter layer in processed devices. In situ As doping of the Cd(Se,Te) layer benefited the device junction quality with current density reaching 28.3 mA/cm2. The results provide useful insights for the optimisation of Cd(Se,Te)/CdTe solar cells. |
published_date |
2021-10-01T05:08:03Z |
_version_ |
1821380793572786176 |
score |
11.04748 |