No Cover Image

Journal article 1292 views 222 downloads

Study of thin film poly-crystalline CdTe solar cells presenting high acceptor concentrations achieved by in-situ arsenic doping

G. Kartopu, O. Oklobia, D. Turkay, D.R. Diercks, B.P. Gorman, V. Barrioz, S. Campbell, J.D. Major, M.K. Al Turkestani, S. Yerci, T.M. Barnes, N.S. Beattie, G. Zoppi, S. Jones, S.J.C. Irvine, Giray Kartopu, Stuart Irvine

Solar Energy Materials and Solar Cells, Volume: 194, Pages: 259 - 267

Swansea University Authors: Giray Kartopu, Stuart Irvine

Abstract

Doping of CdTe using Group-V elements (As, P, and Sb) has gained interest in pursuit of increasing the cell voltage of CdTe thin film solar devices. Studies on bulk CdTe crystals have shown that much higher acceptor concentration than the traditional copper treatment is possible with As, P or Sb, en...

Full description

Published in: Solar Energy Materials and Solar Cells
ISSN: 0927-0248
Published: 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa49015
Abstract: Doping of CdTe using Group-V elements (As, P, and Sb) has gained interest in pursuit of increasing the cell voltage of CdTe thin film solar devices. Studies on bulk CdTe crystals have shown that much higher acceptor concentration than the traditional copper treatment is possible with As, P or Sb, enabled by high process temperature and/or rapid thermal quenching under Cd overpressure. We report a comprehensive study on in-situ As doping of poly-crystalline CdTe solar cells by MOCVD, whereby high acceptor densities, approaching 3 × 1016 cm−3 were achieved at low growth temperature of 390 °C. No As segregation could be detected at grain boundaries, even for 1019 As cm−3. A shallow acceptor level (+0.1 eV) due to AsTe substitutional doping and deep-level defects were observed at elevated As concentrations. Devices with variable As doping were analysed. Narrowing of the depletion layer, enhancement of bulk recombination, and reduction in device current and red response, albeit a small near infrared gain due to optical gap reduction, were observed at high concentrations. Device modelling indicated that the properties of the n-type window layer and associated interfacial recombination velocity are highly critical when the absorber doping is relatively high, demonstrating a route for obtaining high cell voltage.
Keywords: CdTe, Group-V, Doping, Thin film, Photovoltaics, MOCVD
College: Faculty of Science and Engineering
Start Page: 259
End Page: 267