Journal article 640 views 95 downloads
Coulomb branch of N=4 SYM and dilatonic scions in supergravity
Physical Review D, Volume: 104, Issue: 4
Swansea University Authors: Maurizio Piai , John Roughley
-
PDF | Version of Record
Released under the terms of the Creative Commons Attribution 4.0 International license
Download (3.15MB)
DOI (Published version): 10.1103/physrevd.104.046003
Abstract
We find a parametrically light dilaton in special confining theories in three dimensions. Their duals form what we call a scion of solutions to the supergravity associated with the large-N limit of the Coulomb branch of the N = 4 Super-Yang-Mills (SYM) theory. The supergravity description contains o...
Published in: | Physical Review D |
---|---|
ISSN: | 2470-0010 2470-0029 |
Published: |
American Physical Society (APS)
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa57223 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
We find a parametrically light dilaton in special confining theories in three dimensions. Their duals form what we call a scion of solutions to the supergravity associated with the large-N limit of the Coulomb branch of the N = 4 Super-Yang-Mills (SYM) theory. The supergravity description contains one scalar with bulk mass that saturates the Breitenlohner-Freedman unitarity bound. The new solutions are defined within supergravity, they break supersymmetry and scale invariance, and one dimension is compactified on a shrinking circle, yet they are completely regular. An approximate dilaton appears in the spectrum of background fluctuations (or composite states in the confining theory), and becomes parametrically light along a metastable portion of the scion of new supergravity solutions, in close proximity of a tachyonic instability. A first-order phase transition separates stable backgrounds, for which the approximate dilaton is not parametrically light, from metastable and unstable backgrounds, for which the dilaton becomes parametrically light, and eventually tachyonic. |
---|---|
College: |
Faculty of Science and Engineering |
Issue: |
4 |