Journal article 760 views 145 downloads
The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation
Xiuwei Yin,
Guangjun Shen,
Jiang-lun Wu
Analysis and Applications, Volume: 20, Issue: 04, Pages: 777 - 789
Swansea University Author: Jiang-lun Wu
-
PDF | Accepted Manuscript
Download (232.09KB)
DOI (Published version): 10.1142/s0219530521500172
Abstract
In this paper, we study the stability of quasilinear parabolic stochastic partial dif- ferential equations with multiplicative noise, which are neither monotone nor locally monotone. The exponential mean square stability and pathwise exponential stability of the solutions are estab- lished. Moreover...
Published in: | Analysis and Applications |
---|---|
ISSN: | 0219-5305 1793-6861 |
Published: |
Singapore
World Scientific Pub Co Pte Ltd
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa57178 |
first_indexed |
2021-06-21T13:29:21Z |
---|---|
last_indexed |
2023-01-11T14:36:55Z |
id |
cronfa57178 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-07-26T09:18:18.3133502</datestamp><bib-version>v2</bib-version><id>57178</id><entry>2021-06-21</entry><title>The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation</title><swanseaauthors><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-06-21</date><abstract>In this paper, we study the stability of quasilinear parabolic stochastic partial dif- ferential equations with multiplicative noise, which are neither monotone nor locally monotone. The exponential mean square stability and pathwise exponential stability of the solutions are estab- lished. Moreover, under certain hypothesis on the stochastic perturbations, pathwise exponential stability can be derived, without utilzing the mean square stability.</abstract><type>Journal Article</type><journal>Analysis and Applications</journal><volume>20</volume><journalNumber>04</journalNumber><paginationStart>777</paginationStart><paginationEnd>789</paginationEnd><publisher>World Scientific Pub Co Pte Ltd</publisher><placeOfPublication>Singapore</placeOfPublication><isbnPrint/><isbnElectronic/><issnPrint>0219-5305</issnPrint><issnElectronic>1793-6861</issnElectronic><keywords>Quasilinear stochastic partial differential equations; exponential stability; stabilization.</keywords><publishedDay>1</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-07-01</publishedDate><doi>10.1142/s0219530521500172</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders/><projectreference/><lastEdited>2022-07-26T09:18:18.3133502</lastEdited><Created>2021-06-21T14:22:14.3009238</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Xiuwei</firstname><surname>Yin</surname><order>1</order></author><author><firstname>Guangjun</firstname><surname>Shen</surname><order>2</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><order>3</order></author></authors><documents><document><filename>57178__20207__52d0aa507a5d4333a47ff2915cdc1520.pdf</filename><originalFilename>YinShenWu.pdf</originalFilename><uploaded>2021-06-21T14:28:36.8354407</uploaded><type>Output</type><contentLength>237656</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2022-08-23T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-07-26T09:18:18.3133502 v2 57178 2021-06-21 The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation dbd67e30d59b0f32592b15b5705af885 Jiang-lun Wu Jiang-lun Wu true false 2021-06-21 In this paper, we study the stability of quasilinear parabolic stochastic partial dif- ferential equations with multiplicative noise, which are neither monotone nor locally monotone. The exponential mean square stability and pathwise exponential stability of the solutions are estab- lished. Moreover, under certain hypothesis on the stochastic perturbations, pathwise exponential stability can be derived, without utilzing the mean square stability. Journal Article Analysis and Applications 20 04 777 789 World Scientific Pub Co Pte Ltd Singapore 0219-5305 1793-6861 Quasilinear stochastic partial differential equations; exponential stability; stabilization. 1 7 2022 2022-07-01 10.1142/s0219530521500172 COLLEGE NANME COLLEGE CODE Swansea University Not Required 2022-07-26T09:18:18.3133502 2021-06-21T14:22:14.3009238 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Xiuwei Yin 1 Guangjun Shen 2 Jiang-lun Wu 3 57178__20207__52d0aa507a5d4333a47ff2915cdc1520.pdf YinShenWu.pdf 2021-06-21T14:28:36.8354407 Output 237656 application/pdf Accepted Manuscript true 2022-08-23T00:00:00.0000000 true eng |
title |
The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation |
spellingShingle |
The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation Jiang-lun Wu |
title_short |
The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation |
title_full |
The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation |
title_fullStr |
The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation |
title_full_unstemmed |
The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation |
title_sort |
The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation |
author_id_str_mv |
dbd67e30d59b0f32592b15b5705af885 |
author_id_fullname_str_mv |
dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu |
author |
Jiang-lun Wu |
author2 |
Xiuwei Yin Guangjun Shen Jiang-lun Wu |
format |
Journal article |
container_title |
Analysis and Applications |
container_volume |
20 |
container_issue |
04 |
container_start_page |
777 |
publishDate |
2022 |
institution |
Swansea University |
issn |
0219-5305 1793-6861 |
doi_str_mv |
10.1142/s0219530521500172 |
publisher |
World Scientific Pub Co Pte Ltd |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
In this paper, we study the stability of quasilinear parabolic stochastic partial dif- ferential equations with multiplicative noise, which are neither monotone nor locally monotone. The exponential mean square stability and pathwise exponential stability of the solutions are estab- lished. Moreover, under certain hypothesis on the stochastic perturbations, pathwise exponential stability can be derived, without utilzing the mean square stability. |
published_date |
2022-07-01T20:02:49Z |
_version_ |
1821346491040530432 |
score |
11.04748 |