No Cover Image

Journal article 760 views 145 downloads

The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation

Xiuwei Yin, Guangjun Shen, Jiang-lun Wu

Analysis and Applications, Volume: 20, Issue: 04, Pages: 777 - 789

Swansea University Author: Jiang-lun Wu

Abstract

In this paper, we study the stability of quasilinear parabolic stochastic partial dif- ferential equations with multiplicative noise, which are neither monotone nor locally monotone. The exponential mean square stability and pathwise exponential stability of the solutions are estab- lished. Moreover...

Full description

Published in: Analysis and Applications
ISSN: 0219-5305 1793-6861
Published: Singapore World Scientific Pub Co Pte Ltd 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa57178
first_indexed 2021-06-21T13:29:21Z
last_indexed 2023-01-11T14:36:55Z
id cronfa57178
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-07-26T09:18:18.3133502</datestamp><bib-version>v2</bib-version><id>57178</id><entry>2021-06-21</entry><title>The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation</title><swanseaauthors><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-06-21</date><abstract>In this paper, we study the stability of quasilinear parabolic stochastic partial dif- ferential equations with multiplicative noise, which are neither monotone nor locally monotone. The exponential mean square stability and pathwise exponential stability of the solutions are estab- lished. Moreover, under certain hypothesis on the stochastic perturbations, pathwise exponential stability can be derived, without utilzing the mean square stability.</abstract><type>Journal Article</type><journal>Analysis and Applications</journal><volume>20</volume><journalNumber>04</journalNumber><paginationStart>777</paginationStart><paginationEnd>789</paginationEnd><publisher>World Scientific Pub Co Pte Ltd</publisher><placeOfPublication>Singapore</placeOfPublication><isbnPrint/><isbnElectronic/><issnPrint>0219-5305</issnPrint><issnElectronic>1793-6861</issnElectronic><keywords>Quasilinear stochastic partial differential equations; exponential stability; stabilization.</keywords><publishedDay>1</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-07-01</publishedDate><doi>10.1142/s0219530521500172</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders/><projectreference/><lastEdited>2022-07-26T09:18:18.3133502</lastEdited><Created>2021-06-21T14:22:14.3009238</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Xiuwei</firstname><surname>Yin</surname><order>1</order></author><author><firstname>Guangjun</firstname><surname>Shen</surname><order>2</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><order>3</order></author></authors><documents><document><filename>57178__20207__52d0aa507a5d4333a47ff2915cdc1520.pdf</filename><originalFilename>YinShenWu.pdf</originalFilename><uploaded>2021-06-21T14:28:36.8354407</uploaded><type>Output</type><contentLength>237656</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2022-08-23T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2022-07-26T09:18:18.3133502 v2 57178 2021-06-21 The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation dbd67e30d59b0f32592b15b5705af885 Jiang-lun Wu Jiang-lun Wu true false 2021-06-21 In this paper, we study the stability of quasilinear parabolic stochastic partial dif- ferential equations with multiplicative noise, which are neither monotone nor locally monotone. The exponential mean square stability and pathwise exponential stability of the solutions are estab- lished. Moreover, under certain hypothesis on the stochastic perturbations, pathwise exponential stability can be derived, without utilzing the mean square stability. Journal Article Analysis and Applications 20 04 777 789 World Scientific Pub Co Pte Ltd Singapore 0219-5305 1793-6861 Quasilinear stochastic partial differential equations; exponential stability; stabilization. 1 7 2022 2022-07-01 10.1142/s0219530521500172 COLLEGE NANME COLLEGE CODE Swansea University Not Required 2022-07-26T09:18:18.3133502 2021-06-21T14:22:14.3009238 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Xiuwei Yin 1 Guangjun Shen 2 Jiang-lun Wu 3 57178__20207__52d0aa507a5d4333a47ff2915cdc1520.pdf YinShenWu.pdf 2021-06-21T14:28:36.8354407 Output 237656 application/pdf Accepted Manuscript true 2022-08-23T00:00:00.0000000 true eng
title The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation
spellingShingle The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation
Jiang-lun Wu
title_short The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation
title_full The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation
title_fullStr The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation
title_full_unstemmed The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation
title_sort The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation
author_id_str_mv dbd67e30d59b0f32592b15b5705af885
author_id_fullname_str_mv dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu
author Jiang-lun Wu
author2 Xiuwei Yin
Guangjun Shen
Jiang-lun Wu
format Journal article
container_title Analysis and Applications
container_volume 20
container_issue 04
container_start_page 777
publishDate 2022
institution Swansea University
issn 0219-5305
1793-6861
doi_str_mv 10.1142/s0219530521500172
publisher World Scientific Pub Co Pte Ltd
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 1
active_str 0
description In this paper, we study the stability of quasilinear parabolic stochastic partial dif- ferential equations with multiplicative noise, which are neither monotone nor locally monotone. The exponential mean square stability and pathwise exponential stability of the solutions are estab- lished. Moreover, under certain hypothesis on the stochastic perturbations, pathwise exponential stability can be derived, without utilzing the mean square stability.
published_date 2022-07-01T20:02:49Z
_version_ 1821346491040530432
score 11.04748