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1 Introduction

We are concerned with the following quasilinear stochastic partial differential equation{
du+ div(B(u))dt = div(A(u)∇u)dt+ σ(u)dW (t), x ∈ Td, t ∈ [0, T ],

u(0) = u0,
(1.1)

where W (t), t ≥ 0 is a Q-Wiener process. The coefficients B : R → Rd and A : R → Rd⊗d are

appropriate coefficients specified later. This type of deterministic partial differential equations

(i.e., when σ = 0) model the phenomenon of convection-diffusion of ideal fluids and arise in a

diverse variety of areas with significant applications, including, for instance, two or three phase

flows in porous media or sedimentation-consolidation processes, for more details, we refer to [9] and

the references therein. Recently, the stochastic perturbation of this type equations has attracted

many attentions on the well posedness problem. The existence and uniqueness of pathwise weak

solution of the above stochastic equation was firstly studied in Debussche et al. [7] by utilizing

a Yamada-Watanabe type argument and kinetic formulation. Then, based on a new method of

applying Itô’s formula for the L1-norm, Hofmanová and Zhang [11] developed a direct approach

to establish the existence and uniqueness of the solution. Recently, Dong et al. [6] established the
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large deviation principles and Zhang [17] established a small time large deviation principles for the

solution of the equation (1.1).

As is well known, the long-time behaviour of flows is a very interesting and important problem

in the theory of fluid dynamics and has been a very well studied topic, see, e.g. [10, 12–14] and

the references. It would be very interesting and important to analyse the stochastic effects on a

deterministic system. There were some studies for such stochastic equations in fluid mechanics.

Caraballo et al. [3] proved that the weak solutions converge exponentially in the mean square and

almost surely exponentially to the stationary solutions under some conditions. Moreover, they

studied the stabilization of an stationary solution by the appearance of a random disturbance. In

[4], the authors generalized the results of [3] to a class of dissipative nonlinear systems that include

the 3D LANS-α model. Anh and Da [1] studied the exponential behaviour and stabilizability

of a class of abstract nonlinear stochastic evolution equations, which include 2D Navier-Stokes

equations. For more literatures, we refer the reader to [2, 5, 8, 15, 16] and the references.

Inspired by the above investigations, in this paper, we analyse the stability and stabilization of

solutions of the equation (1.1). We first study the existence, uniqueness and the stability properties

of a stationary solution to the corresponding deterministic equation, including both mean square

exponential stability and path-wise exponential stability. Then we consider the stabilization of an

unstable stationary solution by using a multiplicative Itô noise of sufficient intensity.

The rest of the paper is organized as follows. In Section 2, we present some necessary pre-

liminaries. In Section 3, we show the existence and the uniqueness of the stationary solution. In

Section 4, we derive results on the exponential mean square stability and the path-wise exponential

stability of the stationary solution. Finally, in Section 5, we analyse the stabilization problem for

the stationary solution.

2 Preliminaries

We consider periodic boundary conditions, that is x ∈ Td where Td = [0, 1]d denotes the d-

dimensional torus. Let C1
b be the space of continuously differentiable functions with bounded fist

order derivative. For r ∈ [1,+∞], (Lr, ‖ · ‖Lr) are the Lebesgue spaces. In particular, we write H

for L2(Td). Moreover, we also denote the inner product and the normal of H by (·, ·)H and | · |H .

Let H1 := H1,2(Td) be the usual Sobolev space of order 1 with the normal ‖u‖2H1 = ‖u‖L2 +‖∇u‖L2

and H−1 is the topological dual of H1. We denote the duality between H1 and H−1 by 〈·, ·〉. For

any u, v ∈ H1, defining ((u, v)) := (∇u,∇v)H . Then using Poincáre inequality, we know that there

exists a constant λ1 > 0, such that ‖u‖2 := ((u, u)) ≥ λ1|u|2H and thus ‖u‖2H1
∼= ‖u‖2.

Let (Ω,F ,Ft,P) be a stochastic basis with a complete, right-continuous filtration. Defining

Q ∈ L(H,H) be the operator by Qen = λ′nen, where λ′n ≥ 0, n = 1, 2, ... satisfies
∑+∞

n=1 λ
′
n < +∞

and en, n = 1, 2, ... is a complete orthonormal basis in H. For simplicity, we assume Q is positive-

definite. Let βn(t), n = 1, 2, ... be a sequence of real-valued one-dimensional standard Brownian

motions independent on (Ω,F ,Ft,P). Now we define a Q-Wiener process:

W (t) =
+∞∑
n=1

√
λ′nβn(t)en, t ≥ 0.
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Let LQ(H0, H) be the space of Hilbert-Schmidt operator from H0 to H, where H0 = Q1/2H is a

Hilbert space with the inner product

(u, v)0 := (Q−1/2u,Q−1/2v), u, v ∈ H0.

Defining the norm on the space LQ(H0, H) by |Φ|2LQ = Tr(ΦQΦ∗). For an LQ(H0, H) valued

predictable process Φ(t, ω), 0 ≤ t ≤ T , the stochastic integral
∫ T
0

Φ(t, ω)dW (t) is well-defined if

|Φ|2T := E
∫ T

0

Tr(ΦQΦ∗)dt < +∞.

We introduce the following hypotheses.

Hypotheses A. The diffusion matrix A, the flux function B, and the noise in (1.1) satisfy:

(1) A = (Aij)
d
i,j=1 : R → Rd⊗d is of class C1

b , uniformly positive definite and bounded, i.e.

δI ≤ A ≤ CI. Moreover, there exists a constant LA > 0, such that

|A(u)− A(v)| ≤ LA|u− v|.

(2) B = (B1, ..., Bd) : R→ Rd is of class C1
b , and there exists a constant LB > 0, such that

|B(u)−B(v)| ≤ LB|u− v|, |B(u)| ≤ LB(1 + |u|).

(3) σ ∈ C([0,+∞)×H1;LQ(H0, H)), and there exists a constant Lσ > 0, such that

|σ(t, u)|2LQ ≤ Lσ(1 + |u|2H), |σ(t, u)− σ(t, v)|2LQ ≤ Lσ|u− v|2H .

Now, we recall the definition of a solution to (1.1) from [11].

Definition 2.1 An Ft-adapted, H-valued continuous process (u(t), t ≥ 0) is called a solution to

equation (1.1), if

(1) u ∈ L2(Ω, C([0, T ], H)) ∩ L2(Ω, L2([0, T ], H1)) for any T > 0;

(2) for any φ ∈ C∞(Td), t > 0 the following holds almost surely

〈u(t), φ〉 − 〈u0, φ〉 −
∫ t

0

〈B(u(s)),∇φ〉ds

= −
∫ t

0

〈A(u(s))∇u(s),∇φ〉ds+

∫ t

0

〈σ(u(s))dW (s), φ〉.

According to [6], we have

Theorem 2.1 Let u0 ∈ Lp(Ω,F0, L
p(Td)) for all p ∈ [1,∞). Under the hypotheses A, there exists

a unique solution to equation (1.1) that satisfies the following enery inequality

E
(

sup
0≤t≤T

|u|2H
)

+

∫ T

0

E‖u‖2dt < +∞.
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3 Existence and uniqueness of the stationary solutions

Considering the deterministic version of equation (1.1):{
du+ div(B(u))dt = div(A(u)∇u)dt, x ∈ Td, t ∈ [0, T ],

u(0) = u0.
(3.2)

In this section, we aim to study existence and uniqueness of stationary solution to equation (3.2).

We recall a stationary solution to equation (3.2) is an element u∞ ∈ H1 such that

div(B(u∞))− div(A(u∞)∇u∞) = 0, in H−1. (3.3)

The main result of this section is

Theorem 3.1 Under hypotheses A. If δ
√
λ1−LB > 0, then equation (3.2) has at least a stationary

solution u∞ ∈ H1 satisfying

‖u∞‖ ≤
√
λ1LB

δ
√
λ1 − LB

. (3.4)

Moreover, if further δ − LB√
λ1
− LALB

δ
√
λ1−LB

> 0, then the stationary solution is unique.

Proof. We will divide the proof into two steps.

Step 1: Existence. Let v1, v2, ..., vn, ... be an orthonormal basis of H1. For every m ≥ 1, consider

the finite dimensional Hilbert space Vm = span{v1, ..., vm} with scalar product [·, ·]. We define an

approximate stationary solution of equation (3.2) in the following form:

um =
m∑
i=1

cmivi,

which satifies

〈divB(um), vi〉 − 〈div(A(um)∇um), vi〉 = 0. (3.5)

We define a mapping Rm : Vm → Vm by

[Rmu, v] = ((Rmu, v)) := 〈div(B(u)), v〉 − 〈div(A(u)∇u), v〉, u, v ∈ Vm.

For any u ∈ Vm, we easily obtain that

[Rmu, u] = 〈div(B(u)), u〉 − 〈div(A(u)∇u), u〉
= −〈B(u),∇u〉+ 〈A(u)∇u,∇u〉
≥ −|B(u)|H |∇u|H + δ‖u‖2

≥ −LB(1 + |u|H)‖u‖+ δ‖u‖2

≥ −LB(1 +
1√
λ1
‖u‖)‖u‖+ δ‖u‖2

=
(
δ − LB√

λ1

)
‖u‖2 − LB‖u‖.
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If we choose

k >

√
λ1LB

δ
√
λ1 − LB

,

then [Rmu, u] ≥ 0 for all u ∈ Vm such that ‖u‖ = k. Then, by [13, Lemma 1.4], for every m ≥ 1,

there exists um ∈ Vm, ‖um‖ ≤ k such that Rmum = 0. Replacing vi in (3.5) by um, we have

‖um‖ ≤
√
λ1LB

δ
√
λ1 − LB

.

Therefore, there exists a subsequence of {um,m ≥ 1} (also denoted by {um,m ≥ 1}), such that

um converges weakly in H1 and strongly in H to some limit u∞. Next, we will show that u∞ is a

stationary solution to equation (3.2). Observe that, for any v ∈ H1, when m tends to infinity,

|〈divB(um), v〉 − 〈divB(u∞), v〉|
= |〈B(um)−B(u∞),∇v〉| ≤ LB|um − u∞|H‖v‖ → 0,

and

|〈div(A(um)∇um − A(u∞)∇u∞), v〉|
= |〈A(um)∇um − A(u∞)∇u∞,∇v〉|
≤ |〈A(um)(∇um −∇u∞),∇v〉|+ |〈(A(um)− A(u∞))∇u∞,∇v〉|
≤ C|〈∇um −∇u∞,∇v〉|+ LA|um − u∞|H‖u∞‖‖v‖ → 0.

In other words,

〈divB(u∞), vi〉 − 〈div(A(u∞)∇u∞), vi〉 = 0, i = 1, 2, · · · . (3.6)

In particular, (3.6) is also true for any v ∈ Vm. A continuity argument shows that u∞ is a solution

of (3.3).

Step 2: Unique. Let u1 and u2 be two solutions of equation (3.3). Then for any v ∈ H1,

div(B(ui))− div(A(ui)∇ui) = 0, i = 1, 2.

Let v = u1 − u2, then

0 = 〈div(B(u1)−B(u2)), u1 − u2〉 − 〈div(A(u1)∇u1 − A(u2)∇u2), u1 − u2〉
= −〈∇(u1 − u2), B(u1)−B(u2)〉+ 〈∇(u1 − u2), A(u1)∇u1 − A(u2)∇u2〉
≥ −LB‖u1 − u2‖|u1 − u2|H + 〈∇(u1 − u2), A(u1)(∇u1 −∇u2)〉

+ 〈∇(u1 − u2), (A(u1)− A(∇u2))∇u2〉

≥ − LB√
λ1
‖u1 − u2‖2 + δ‖u1 − u2‖2 − LA‖u2‖|u1 − u2|H‖u1 − u2‖

≥ − LB√
λ1
‖u1 − u2‖2 + δ‖u1 − u2‖2 −

LA√
λ1
‖u2‖‖u1 − u2‖2

≥
(
− LB√

λ1
+ δ − LALB

δ
√
λ1 − LB

)
‖u1 − u2‖2.

Since δ − LB√
λ1
− LALB

δ
√
λ1−LB

> 0, we get u1 = u2. The proof is completed.
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4 The exponential stability of the solutions

In this section, we discuss the exponential stability in the mean square and almost sure exponential

stability of weak solutions to the stochastic equation (1.1).

Theorem 4.1 Assuming that the conditions of Theorem 3.1 hold and σ(t, u∞) = 0, ∀t ≥ 0. If

δ − LB√
λ1
− LALB

δ
√
λ1 − LB

− Lσ
2λ1

> 0. (4.7)

Then

E|u(t)− u∞|2H ≤ E|u(0)− u∞|2He−λt, ∀t ≥ 0.

That is, the stationary solution u∞ to (1.1) is exponentially stable in mean square.

Remark 1. The condition σ(t, u∞) = 0, ∀t ≥ 0 implies that the stationary solution u∞ of

(3.2) is also a solution of the stochastic perturbed equation (1.1).

Proof of Theorem 4.1. Let λ be sufficiently small such that

LB√
λ1
− δ +

λ+ Lσ
2λ1

+
LALB

δ
√
λ1 − LB

< 0.

Observe that

u(t)− u∞ = u0 − u∞ −
∫ t

0

(div(B(u(s)))− div(B(u∞))ds

+

∫ t

0

(div(A(u(s))∇u(s))− div(A(u∞)∇u∞)ds

+

∫ t

0

(σ(u(s))− σ(u∞))dW (s).

Then by Itô formula, we get

eλtE|u(t)− u∞|2H = E|u0 − u∞|2H + λ

∫ t

0

eλsE|u(s)− u∞|2Hds

− 2

∫ t

0

eλsE〈div(B(u(s)))− div(B(u∞), u(s)− u∞〉ds

+ 2

∫ t

0

eλsE〈div(A(u(s))∇u(s))− div(A(u∞)∇u∞), u(s)− u∞〉ds

+

∫ t

0

eλsE|σ(s, u(s))|2LQds.

Let w(t) = u(t)− u∞, it is easy to see that

−〈div(B(u)−B(u∞)), w〉 = 〈B(u)−B(u∞),∇w〉 ≤ LB|u− u∞|H‖w‖ ≤
LB√
λ1
‖w‖2 (4.8)
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and

〈div(A(u)∇u− A(u∞)∇u∞), w〉
= −〈A(u)∇u− A(u∞)∇u∞,∇w〉
= −〈A(u)(∇u−∇u∞),∇w〉 − 〈(A(u)− A(u∞))∇u∞,∇w〉
≤ −δ‖w‖2 + LA|w|H‖u∞‖‖w‖

≤
(
−δ +

LALB

δ
√
λ1 − LB

)
‖w‖2.

(4.9)

Consequently, we have

eλtE|u(t)− u∞|2H ≤ E|u0 − u∞|2H + λ

∫ t

0

easE|u(s)− u∞|2Hds

+ 2
( LB√

λ1
− δ +

LALB

δ
√
λ1 − LB

)∫ t

0

eλsE‖u(s)− u∞‖2ds

+

∫ t

0

eλsE|σ(s, u(s))|2LQds

≤ E|u0 − u∞|2H +

∫ t

0

eλsE|σ(s, u(s))|2LQds

+
(

2
LB√
λ1
− 2δ +

λ

λ1
+

2LALB

δ
√
λ1 − LB

)∫ t

0

eλsE‖u(s)− u∞‖2ds

≤ E|u0 − u∞|2H

+
(

2
LB√
λ1
− 2δ +

λ+ Lσ
λ1

+
2LALB

δ
√
λ1 − LB

)∫ t

0

eλsE‖u(s)− u∞‖2ds

≤ E|u0 − u∞|2H .

The proof is completed.

Remark 2. Let σ ≡ 0, then according to Theorem 4.1, if δ− LB√
λ1
− LALB

δ
√
λ1−LB

> 0 holds, we can

get that the stationary solution u∞ to (3.2) is exponentially stable in mean square, i.e.

|u(t)− u∞|2H ≤ e−λt|u(0)− u∞|2H , for some λ > 0.

Theorem 4.2 Under the conditions of Theorem 4.1, the stationary solution u∞ to (1.1) is almost

surely exponentially stable. That is, there exists a constant γ > 0, such that

lim sup
t→∞

1

t
log |u(t)− u∞|2H ≤ −γ, almost surely.

Proof. Let N be a natural number. For any t ≥ N , using the Itô formula, we get

|u(t)− u∞|2H = |uN − u∞|2H − 2

∫ t

N

〈div(B(u(s))), u(s)− u∞〉ds

+ 2

∫ t

N

〈div(A(u(s))∇u(s)), u(s)− u∞〉ds

+

∫ t

N

|σ(s, u(s))|2LQds+ 2

∫ t

N

(u(s)− u∞, σ(s, u(s))dW (s)).

(4.10)
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For the stochastic term, it follows from Burkholder-Davis-Gundy inequalities that

2E

[
sup

N≤t≤N+1

∫ t

N

(u(s)− u∞, σ(s, u(s))dW (s)

]
≤ c1E

[∫ N+1

N

|u(N)− u∞|2H |σ(s, u(s))|2LQds
] 1

2

≤ c1E

[
sup

N≤s≤N+1
|u(s)− u∞|2H

∫ N+1

N

|σ(s, u(s))|2LQds
] 1

2

≤ 1

2
E
[

sup
N≤s≤N+1

|u(s)− u∞|2H
]

+
c21
2
E

∫ N+1

N

|σ(s, u(s))|2LQds,

(4.11)

where c1 > 0. Combining (4.11) with (4.10), one gets

E

[
sup

N≤t≤N+1
|u(t)− u∞|2H

]
≤E|uN − u∞|2H

+ 2
( LB√

λ1
− δ +

LALB

δ
√
λ1 − LB

)∫ N+1

N

E‖u(s)− u∞‖2ds

+
1

2
E
[

sup
N≤s≤N+1

|u(s)− u∞|2H
]

+
c21 + 2

2
E

∫ N+1

N

|σ(s, u(s))|2LQds.

Since δ − LB√
λ1
− LALB

δ
√
λ1−LB

> 0, it follows form Theorem 4.1 that

E

[
sup

N≤t≤N+1
|u(t)− u∞|2H

]
≤ 2E|uN − u∞|2H + c21E

∫ N+1

N

|σ(s, u(s))|2LQds

≤ 2E|uN − u∞|2H + c21LσE

∫ N+1

N

E|u(s)− u∞|2Hds

≤ 2E|u0 − u∞|2He−λN + c21LσE|u(0)− u∞|2HE
∫ N+1

N

e−λsds

≤ 2E|u0 − u∞|2He−λN +
c21Lσ
λ

E|u(0)− u∞|2H(1− e−λ)e−λN

=: Me−λN .

Let εN = e−
1
4
λN , then Chebyshev inequality implies that

P

(
sup

N≤t≤N+1
|u(t)− u∞|2 > εN

)
≤ 1

ε2N
E

[
sup

N≤t≤N+1
|u(t)− u∞|2H

]
≤Me−

λN
2 .

Then Borel-Cantelli lemma implies that

lim sup
t→∞

1

t
log |u(t)− u∞|2H ≤ −γ, almost surely

holds for γ = λ
8
. We thus complete the proof.
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5 Stabilization of the solutions

In the previous section, we studied the exponentially stable in mean square of equation (1.1).

However, for a giving stochastic ordinary differential equation, it may be path-wise exponentially

stable but not exponential stable in the mean square. Consequently, in this section, we want to

obtain path-wise exponential stability results by avoiding the method of using the mean square

stability. To this end, we also need some additional hypotheses on the stochastic perturbation.

Hypotheses B. Assuming that

Q̃ψ(t, u) := Tr[(ψu(u)⊗ ψu(u))(σ(t, u)Qσ(t, u)∗)] ≥ %(t)2|u(t)− u∞|4H ,

where ψ(u) = |u − u∞|2H and %(t) is a nonnegative continuous function such that there exists

%0 > 2Lσ satisfying

lim inf
t→∞

1

t

∫ t

0

%(s)ds ≥ %0.

Theorem 5.1 Under Hypotheses A and B. Let u∞ be the the stationary solution of (3.2), if u∞
is small such that

δ − LB√
λ1
− LA‖u∞‖√

λ1
− Lσ

2λ1
+

%0
4λ1

> 0. (5.12)

Then u∞ is almost surely exponentially stable.

Proof. By using the Itô formula to the function log |u(t)− u∞|2H , we get

log |u(t)− u∞|2H = log |u(0)− u∞|2H − 2

∫ t

0

〈div(B(u(s)))− div(B(u∞)), u(s)− u∞〉
|u(t)− u∞|2H

ds

+ 2

∫ t

0

〈div(A(u(s))∇u(s))− div(A(u∞)∇u∞), u(s)− u∞〉
|u(t)− u∞|2H

ds

+

∫ t

0

|σ(s, u(s))|2LQ
|u(t)− u∞|2H

ds− 1

2

∫ t

0

Q̃ψ(s, u(s))

|u(s)− u∞|4H
ds

+ 2

∫ t

0

1

|u(t)− u∞|2H
(u(s)− u∞, σ(s, u(s))dW (s))

≤ log |u(0)− u∞|2H + 2
( LB√

λ1
− δ +

LA√
λ1
‖u∞‖+

Lσ
λ1

)
λ1t

− 1

2

∫ t

0

Q̃ψ(s, u(s))

|u(s)− u∞|4H
ds+ 2

∫ t

0

(u(s)− u∞, σ(s, u(s))dW (s))

|u(t)− u∞|2H
.

Let

M(t) = 2

∫ t

0

(u(s)− u∞, σ(s, u(s))dW (s))

|u(t)− u∞|2H
,

then the exponential martingale inequality implies that for any positive T > 0, 0 < ε < 1 and

integer k ≥ 1, we have

P

{
ω : sup

[0,T ]

[
M(t)− ε

2

∫ t

0

Q̃ψ(s, u(s))

|u(s)− u∞|4H
ds
]
>

2 log k

ε

}
≤ 1

k2
.
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According to Borel-Cantelli lemma, there exists an integer k0(ω) > 0 for almost all ω ∈ Ω such

that

2

∫ t

0

(u(s)− u∞, σ(s, u(s))dW (s))

|u(t)− u∞|2H
≤ 2 log k

ε
+
ε

2

∫ t

0

Q̃ψ(s, u(s))

|u(s)− u∞|4H
ds

for all 0 < t ≤ k, k ≥ k0(ω). Consequently,

log |u(t)− u∞|2H ≤ log |u(0)− u∞|2H + 2
( LB√

λ1
− δ +

LA√
λ1
‖u∞‖+

Lσ
2λ1

)
λ1t

+
2 log k

ε
− 1− ε

2

∫ t

0

Q̃ψ(s, u(s))

|u(s)− u∞|4H
ds, k ≤ t ≤ k + 1.

By using Hypotheses B, we get

1

t
log |u(t)− u∞|2H ≤

1

t

[2 log k

ε
+ log |u(0)− u∞|2H

]
− 1− ε

2t

∫ t

0

%(s)ds

+ 2
( LB√

λ1
− δ +

LA√
λ1
‖u∞‖+

Lσ
2λ1

)
λ1, k ≤ t ≤ k + 1.

Therefore,

lim sup
t→+∞

1

t
log |u(t)− u∞|2H ≤ 2

( LB√
λ1
− δ +

LA√
λ1
‖u∞‖+

Lσ
2λ1

)
λ1 −

1− ε
2

%0.

By taking γ = 2
(
δλ1 − LB

√
λ1 − LA

√
λ1‖u∞‖ − Lσ

2
+ %0

4

)
and letting ε→ 0, one gets

lim sup
t→+∞

1

t
log |u(t)− u∞|2H ≤ −γ.

This completes the proof of the theorem.

Remark 3. According to (3.4), a sufficient condition ensuring (5.12) is

δ − LB√
λ1
− LALB

δ
√
λ1 − LB

− Lσ
2λ1

+
%0

4λ1
> 0.

Let’s consider a special case. When σ(t, u) = σ(u − u∞) and W is a one-dimensional Brownian

motion. Then a basic calculus implies that Lσ = σ2, %0 = 4σ2, the above condition becomes

δ − LB√
λ1
− LALB

δ
√
λ1 − LB

> − σ2

2λ1
.

This condition is weaker than the condition in Remak 2. So we do not know whether the stationary

solution u∞ to (3.2) is exponentially stable or not. Therefore, a multiplicative Itô noise of sufficient

intensity will improve the stability condition in the deterministic sense.
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