No Cover Image

Journal article 876 views 131 downloads

Least squares estimation for path-distribution dependent stochastic differential equations

Panpan Ren, Jiang-lun Wu

Applied Mathematics and Computation, Volume: 410, Start page: 126457

Swansea University Authors: Panpan Ren, Jiang-lun Wu

  • RenWu.pdf

    PDF | Accepted Manuscript

    ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)

    Download (2.18MB)

Abstract

We study a least squares estimator for an unknown parameter in the drift coefficient of a path- distribution dependent stochastic differential equation involving a small dispersion parameter $\epsilon>0$. The estimator, based on $n$ (where $n\in\mathbb{N}$) discrete time observations of the stoch...

Full description

Published in: Applied Mathematics and Computation
ISSN: 0096-3003 0096-3003
Published: Elsevier BV 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa57110
first_indexed 2021-06-12T13:20:29Z
last_indexed 2023-01-11T14:36:48Z
id cronfa57110
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-08-21T21:25:13.1280371</datestamp><bib-version>v2</bib-version><id>57110</id><entry>2021-06-12</entry><title>Least squares estimation for path-distribution dependent stochastic differential equations</title><swanseaauthors><author><sid>730d4aa09026fef7d3d03653815692aa</sid><firstname>Panpan</firstname><surname>Ren</surname><name>Panpan Ren</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-06-12</date><abstract>We study a least squares estimator for an unknown parameter in the drift coefficient of a path- distribution dependent stochastic differential equation involving a small dispersion parameter $\epsilon&gt;0$. The estimator, based on $n$ (where $n\in\mathbb{N}$) discrete time observations of the stochastic differential equation, is shown to be convergent weakly to the true value as $\epsilon \to 0$ and $n \to \infty$. This indicates that the least squares estimator obtained is consistent with the true value. Moreover, we obtain the rate of convergence and derive the asymptotic distribution of least squares estimator.</abstract><type>Journal Article</type><journal>Applied Mathematics and Computation</journal><volume>410</volume><journalNumber/><paginationStart>126457</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0096-3003</issnPrint><issnElectronic>0096-3003</issnElectronic><keywords>Path-distribution dependent stochastic differential equation, least squares estimator, consistency, asymptotic distribution.</keywords><publishedDay>1</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-12-01</publishedDate><doi>10.1016/j.amc.2021.126457</doi><url>http://dx.doi.org/10.1016/j.amc.2021.126457</url><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>Other</apcterm><funders/><projectreference/><lastEdited>2022-08-21T21:25:13.1280371</lastEdited><Created>2021-06-12T14:04:37.3055116</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Panpan</firstname><surname>Ren</surname><order>1</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><order>2</order></author></authors><documents><document><filename>57110__20142__eca0bd774ed54620b1ed03a484671b09.pdf</filename><originalFilename>RenWu.pdf</originalFilename><uploaded>2021-06-12T14:16:35.8467885</uploaded><type>Output</type><contentLength>2290785</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2022-06-29T00:00:00.0000000</embargoDate><documentNotes>&#xA9;2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-08-21T21:25:13.1280371 v2 57110 2021-06-12 Least squares estimation for path-distribution dependent stochastic differential equations 730d4aa09026fef7d3d03653815692aa Panpan Ren Panpan Ren true false dbd67e30d59b0f32592b15b5705af885 Jiang-lun Wu Jiang-lun Wu true false 2021-06-12 We study a least squares estimator for an unknown parameter in the drift coefficient of a path- distribution dependent stochastic differential equation involving a small dispersion parameter $\epsilon>0$. The estimator, based on $n$ (where $n\in\mathbb{N}$) discrete time observations of the stochastic differential equation, is shown to be convergent weakly to the true value as $\epsilon \to 0$ and $n \to \infty$. This indicates that the least squares estimator obtained is consistent with the true value. Moreover, we obtain the rate of convergence and derive the asymptotic distribution of least squares estimator. Journal Article Applied Mathematics and Computation 410 126457 Elsevier BV 0096-3003 0096-3003 Path-distribution dependent stochastic differential equation, least squares estimator, consistency, asymptotic distribution. 1 12 2021 2021-12-01 10.1016/j.amc.2021.126457 http://dx.doi.org/10.1016/j.amc.2021.126457 COLLEGE NANME COLLEGE CODE Swansea University Other 2022-08-21T21:25:13.1280371 2021-06-12T14:04:37.3055116 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Panpan Ren 1 Jiang-lun Wu 2 57110__20142__eca0bd774ed54620b1ed03a484671b09.pdf RenWu.pdf 2021-06-12T14:16:35.8467885 Output 2290785 application/pdf Accepted Manuscript true 2022-06-29T00:00:00.0000000 ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/
title Least squares estimation for path-distribution dependent stochastic differential equations
spellingShingle Least squares estimation for path-distribution dependent stochastic differential equations
Panpan Ren
Jiang-lun Wu
title_short Least squares estimation for path-distribution dependent stochastic differential equations
title_full Least squares estimation for path-distribution dependent stochastic differential equations
title_fullStr Least squares estimation for path-distribution dependent stochastic differential equations
title_full_unstemmed Least squares estimation for path-distribution dependent stochastic differential equations
title_sort Least squares estimation for path-distribution dependent stochastic differential equations
author_id_str_mv 730d4aa09026fef7d3d03653815692aa
dbd67e30d59b0f32592b15b5705af885
author_id_fullname_str_mv 730d4aa09026fef7d3d03653815692aa_***_Panpan Ren
dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu
author Panpan Ren
Jiang-lun Wu
author2 Panpan Ren
Jiang-lun Wu
format Journal article
container_title Applied Mathematics and Computation
container_volume 410
container_start_page 126457
publishDate 2021
institution Swansea University
issn 0096-3003
0096-3003
doi_str_mv 10.1016/j.amc.2021.126457
publisher Elsevier BV
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
url http://dx.doi.org/10.1016/j.amc.2021.126457
document_store_str 1
active_str 0
description We study a least squares estimator for an unknown parameter in the drift coefficient of a path- distribution dependent stochastic differential equation involving a small dispersion parameter $\epsilon>0$. The estimator, based on $n$ (where $n\in\mathbb{N}$) discrete time observations of the stochastic differential equation, is shown to be convergent weakly to the true value as $\epsilon \to 0$ and $n \to \infty$. This indicates that the least squares estimator obtained is consistent with the true value. Moreover, we obtain the rate of convergence and derive the asymptotic distribution of least squares estimator.
published_date 2021-12-01T20:02:37Z
_version_ 1821346478447132672
score 11.04748