Journal article 876 views 131 downloads
Least squares estimation for path-distribution dependent stochastic differential equations
Applied Mathematics and Computation, Volume: 410, Start page: 126457
Swansea University Authors: Panpan Ren, Jiang-lun Wu
-
PDF | Accepted Manuscript
©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)
Download (2.18MB)
DOI (Published version): 10.1016/j.amc.2021.126457
Abstract
We study a least squares estimator for an unknown parameter in the drift coefficient of a path- distribution dependent stochastic differential equation involving a small dispersion parameter $\epsilon>0$. The estimator, based on $n$ (where $n\in\mathbb{N}$) discrete time observations of the stoch...
Published in: | Applied Mathematics and Computation |
---|---|
ISSN: | 0096-3003 0096-3003 |
Published: |
Elsevier BV
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa57110 |
first_indexed |
2021-06-12T13:20:29Z |
---|---|
last_indexed |
2023-01-11T14:36:48Z |
id |
cronfa57110 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-08-21T21:25:13.1280371</datestamp><bib-version>v2</bib-version><id>57110</id><entry>2021-06-12</entry><title>Least squares estimation for path-distribution dependent stochastic differential equations</title><swanseaauthors><author><sid>730d4aa09026fef7d3d03653815692aa</sid><firstname>Panpan</firstname><surname>Ren</surname><name>Panpan Ren</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-06-12</date><abstract>We study a least squares estimator for an unknown parameter in the drift coefficient of a path- distribution dependent stochastic differential equation involving a small dispersion parameter $\epsilon>0$. The estimator, based on $n$ (where $n\in\mathbb{N}$) discrete time observations of the stochastic differential equation, is shown to be convergent weakly to the true value as $\epsilon \to 0$ and $n \to \infty$. This indicates that the least squares estimator obtained is consistent with the true value. Moreover, we obtain the rate of convergence and derive the asymptotic distribution of least squares estimator.</abstract><type>Journal Article</type><journal>Applied Mathematics and Computation</journal><volume>410</volume><journalNumber/><paginationStart>126457</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0096-3003</issnPrint><issnElectronic>0096-3003</issnElectronic><keywords>Path-distribution dependent stochastic differential equation, least squares estimator, consistency, asymptotic distribution.</keywords><publishedDay>1</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-12-01</publishedDate><doi>10.1016/j.amc.2021.126457</doi><url>http://dx.doi.org/10.1016/j.amc.2021.126457</url><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>Other</apcterm><funders/><projectreference/><lastEdited>2022-08-21T21:25:13.1280371</lastEdited><Created>2021-06-12T14:04:37.3055116</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Panpan</firstname><surname>Ren</surname><order>1</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><order>2</order></author></authors><documents><document><filename>57110__20142__eca0bd774ed54620b1ed03a484671b09.pdf</filename><originalFilename>RenWu.pdf</originalFilename><uploaded>2021-06-12T14:16:35.8467885</uploaded><type>Output</type><contentLength>2290785</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2022-06-29T00:00:00.0000000</embargoDate><documentNotes>©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-08-21T21:25:13.1280371 v2 57110 2021-06-12 Least squares estimation for path-distribution dependent stochastic differential equations 730d4aa09026fef7d3d03653815692aa Panpan Ren Panpan Ren true false dbd67e30d59b0f32592b15b5705af885 Jiang-lun Wu Jiang-lun Wu true false 2021-06-12 We study a least squares estimator for an unknown parameter in the drift coefficient of a path- distribution dependent stochastic differential equation involving a small dispersion parameter $\epsilon>0$. The estimator, based on $n$ (where $n\in\mathbb{N}$) discrete time observations of the stochastic differential equation, is shown to be convergent weakly to the true value as $\epsilon \to 0$ and $n \to \infty$. This indicates that the least squares estimator obtained is consistent with the true value. Moreover, we obtain the rate of convergence and derive the asymptotic distribution of least squares estimator. Journal Article Applied Mathematics and Computation 410 126457 Elsevier BV 0096-3003 0096-3003 Path-distribution dependent stochastic differential equation, least squares estimator, consistency, asymptotic distribution. 1 12 2021 2021-12-01 10.1016/j.amc.2021.126457 http://dx.doi.org/10.1016/j.amc.2021.126457 COLLEGE NANME COLLEGE CODE Swansea University Other 2022-08-21T21:25:13.1280371 2021-06-12T14:04:37.3055116 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Panpan Ren 1 Jiang-lun Wu 2 57110__20142__eca0bd774ed54620b1ed03a484671b09.pdf RenWu.pdf 2021-06-12T14:16:35.8467885 Output 2290785 application/pdf Accepted Manuscript true 2022-06-29T00:00:00.0000000 ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
Least squares estimation for path-distribution dependent stochastic differential equations |
spellingShingle |
Least squares estimation for path-distribution dependent stochastic differential equations Panpan Ren Jiang-lun Wu |
title_short |
Least squares estimation for path-distribution dependent stochastic differential equations |
title_full |
Least squares estimation for path-distribution dependent stochastic differential equations |
title_fullStr |
Least squares estimation for path-distribution dependent stochastic differential equations |
title_full_unstemmed |
Least squares estimation for path-distribution dependent stochastic differential equations |
title_sort |
Least squares estimation for path-distribution dependent stochastic differential equations |
author_id_str_mv |
730d4aa09026fef7d3d03653815692aa dbd67e30d59b0f32592b15b5705af885 |
author_id_fullname_str_mv |
730d4aa09026fef7d3d03653815692aa_***_Panpan Ren dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu |
author |
Panpan Ren Jiang-lun Wu |
author2 |
Panpan Ren Jiang-lun Wu |
format |
Journal article |
container_title |
Applied Mathematics and Computation |
container_volume |
410 |
container_start_page |
126457 |
publishDate |
2021 |
institution |
Swansea University |
issn |
0096-3003 0096-3003 |
doi_str_mv |
10.1016/j.amc.2021.126457 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
url |
http://dx.doi.org/10.1016/j.amc.2021.126457 |
document_store_str |
1 |
active_str |
0 |
description |
We study a least squares estimator for an unknown parameter in the drift coefficient of a path- distribution dependent stochastic differential equation involving a small dispersion parameter $\epsilon>0$. The estimator, based on $n$ (where $n\in\mathbb{N}$) discrete time observations of the stochastic differential equation, is shown to be convergent weakly to the true value as $\epsilon \to 0$ and $n \to \infty$. This indicates that the least squares estimator obtained is consistent with the true value. Moreover, we obtain the rate of convergence and derive the asymptotic distribution of least squares estimator. |
published_date |
2021-12-01T20:02:37Z |
_version_ |
1821346478447132672 |
score |
11.04748 |