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Abstract

We study a least squares estimator for an unknown parameter in the drift coefficient of a path-
distribution dependent stochastic differential equation involving a small dispersion parameter
ε > 0. The estimator, based on n (where n ∈ N) discrete time observations of the stochastic
differential equation, is shown to be convergent weakly to the true value as ε → 0 and n →
∞. This indicates that the least squares estimator obtained is consistent with the true value.
Moreover, we obtain the rate of convergence and derive the asymptotic distribution of least
squares estimator.
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1 Introduction

Nowadays, stochastic differential equations (SDEs) are widely used in modelling time evolution of
dynamical systems influenced by random noise, see, the monographs [6, 12, 29, 32] (and references
therein). Usually, there exist unknown parameters in such modelled systems, such as those stochas-
tic models with comparably easier structured stochastic differential equations involving unknown
quantities (see, [2, P.2-4]). Fundamental issues are to estimate certain parameters (i.e., determin-
istic quantities) appearing in the stochastic models by certain observations (or by experimental
data). Viewing the drift part of the SDEs as the averaging evolution of the systems, estimating the
drift parameter of SDEs is hence an important topic. To approach the true value of the unknown
parameter, the asymptotic approach to statistical estimation is frequently taken an advantage due
to its general applicability and relative simplicity (cf. [2]). As we know, the estimations upon the
unknown quantities are generally based on continuous-time or discrete-time observations. Whereas,
the parameter estimation relied on continuous-time observations is a mathematical idealisation al-
though there is a vast literature concerned with such topic. On the other hand, no measuring
device can follow continuously the sample paths of the diffusion processes involved, which are in-
deed rather tricky. Hence, in practice the investigation on the parameter estimations with the help
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of discrete-time observations has been received much more attention recently. Most importantly,
the parameter estimation by the aid of discrete-time observations can be implemented conveniently
with a powerful theory of simulation schemes and numerical analysis of diffusion processes.

So far, there are numerous methods to investigate the parameter estimations on the unknown
parameters in the drift coefficents; see, [17, 23, 30, 33] by maximum likelihood estimator (MLE
for short), [4, 14, 17, 30] via least squares estimator (LSE for abbreviation), and [27] through
trajectory-fitting estimator, to name a few. Diffusion processes with small noises have been applied
considerably in mathematical finance, see, [16, 18, 35, 42] and references within. In particular,
Kutoyants [18] investigated the issues upon parametric and nonparametric identification. Moreover,
the asymptotic behavior of parametric estimators (e.g. the maximum likelihood, the Bayes and the
minimum distance estimators) and the nonparametric estimators (e.g. the kernel-type estimators)
was discussed.

In the past forty years, the asymptotic theory on parameter estimations for diffusion processes
with small noises has also been developed very well, see, for instance, [7, 21, 22, 34, 36, 37] for SDEs
driven by Lévy processes with arbitrary moments, and [8, 24, 25] for SDEs driven by α-stable Lévy
noises which enjoy heavy tail properties.

On the other hand, from the stochastic modelling perspective and diverse demanding in practical
problems, there has been increasing interest on studying stochastic differential equations with path-
distribution coefficients, see e.g. [9, 10, 40] (and references therein). The distribution-dependent
SDEs are also named as McKean-Vlasov SDEs or mean-filed SDEs, which have been studied inten-
sively in the literature, see e.g. [5, 20] and references therein. Such kind of SDEs has been applied
successfully in stochastic differential games and stochastic optimal optimisation, see, [19] and ref-
erences within. Although McKean-Vlasov SDEs have been applied diffusively in different research
areas, so far there is little work on parameter estimations except the existing literature [41], to the
best of our knowledge. Recently in [31] we carried out least squares estimation for path-distribution
dependent SDEs with monotone condition via discrete-time observation. In the present paper, we
are concerned with the LSE problem for the path-distribution stochastic differential equations with
small dispersion noise and involving unknown parameter in the drift. Our key start point is the
associated discrete-time observations of path-distribution dependent SDEs (see (2.1) below). We
then investigate parameter estimation for McKean-Vlasov SDEs which are not only path-dependent
but also dependent on the law of the path. Since the state space of the window process is infinite
dimensional, some new procedures need to be put forward. We succeeded the task by interpolating
the discrete-time observations (see (2.4) below for more details). Moreover, our proposed estimator
has wide applications in e.g. derivative pricing, future data prediction, stochastic filters, stochastic
mean-field games which will appear in our forthcoming paper. For more applications of parameter
estimations, see [1, 16, 17, 18].

Before closing the introduction part, we would like to explicate a bit more of the relation of the
current paper with our previous paper [31]. The aim of the present paper is to construct a classi-
cal (or explicit) Euler-Maruyama approximation scheme to path-distribution dependent stochastic
differential equations and then to derive the least squares estimation for the drift parameter of the
path-distribution dependent stochastic differential equations. For stochastic differential equations
with certain complexity like, for instance, the McKean-Vlasov stochastic differential equations, it is
comparably easier to derive modified approximating schemes, such as the tamed Euler-Maruyama
scheme for the McKean-Vlasov stochastic differential equations carried out in our previous paper
[31]. Establishing convergent Euler-Maruyama approximations are difficulty for path-distribution
dependent stochastic differential equations, as explored for various SDEs in the literature (see for
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instance [26] and references therein). It is even harder and tedious to obtain the convergence
of the classical Euler-Maruyama approximations for our path-distribution dependent stochastic
differential equations, due to the measure dependence coefficients. On the other hand, due to
succinct and comparably easier formulation, classical Euler-Maruyama approximation schemes to
stochastic differential equations, including our path-distribution dependent stochastic differential
equations, are important and efficiently useful in practice. This motivates us to establish a classical
Euler-Maruyama approximation scheme and to obtain more explicit contrast functions for the least
squares estimation. While in our previous paper [31], we constructed a tamed Euler-Maruyama
scheme for the McKean-Vlasov stochastic differential equations with monotone coefficients, and
the associated contrast functions look more complicated for simulation. In the present paper,
we establish classical Euler-Maruyama approximations for path-distribution dependent stochas-
tic differential equations with Lipschitz coefficients and we take the advantage of the obtained
classical Euler-Maruyama approximation scheme and the associated succinct contrast functions,
several numerical simulations were implemented to support our theoretical result. We have done
the numerical simulation to support our theoretical result. In summary, our present paper focuses
more on applicable aspects by establishing a classical Euler-Maruyama approximation scheme for
stochastic equations with (typical) Lipschitz coefficients, while the previous paper [31] dealt with a
tamed Euler-Maruyama approximation scheme for stochastic equations with monotone coefficients
(i.e., slightly more general coefficients).

The rest of the paper is arranged as follows. In Section 2, we introduce some notations, present
the framework of our paper, and construct the LSE; Section 3 is devoted to the consistency of LSE.
Section 4 focus on the asymptotic distribution of LSE. In Section5 we provide an example(named
as Example 5.1) to illustrate our main results (i.e., theorems 3.1 and 4.1). Moreover we implement
numerical simulations to support our theoretical analysis.

Throughout this paper, we use c > 0 for a generic constant which may change from line to line.

2 Preliminaries
sec0

We start with some notation and terminology which will be used later. For d,m ∈ N, the set of all
positive integers, let (Rd, 〈·, ·〉, | · |) be the d-dimensional Euclinean space with the inner product
〈·, ·〉 inducing the norm | · | and Rd ⊗ Rm the collection of all d × m matrixes with real entries,
which is endowed with the Hilbert-Schmidt norm ‖ · ‖. 0 ∈ Rd denotes the zero vector. For a
matrix A, A∗ denotes the transpose of A. Concerning a square matrix A, A−1 means the inverse
of A provided that detA 6= 0. For p ∈ N, let Θ be an open bounded convex subset of Rp, and
Θ the closure of Θ. For r > 0 and x ∈ Rp, Br(x) represents the closed ball centered at x with
the radius r. For z ∈ Rd, δz denotes Dirac’s delta measure or unit mass at the point z. For a real
number a > 0, bac stands for the integer part of a. For a random variable ξ, Lξ denotes its law.
For a fixed finite number r0 > 0, C := C([−r0, 0];Rd) means the family of all continuous functions
f : [−r0, 0] → Rd, which is a Polish (i.e., separable, complete metric) space under the uniform
norm ‖f‖∞ := sup−r0≤θ≤0 |f(θ)|. Generally speaking, r0 > 0 is named as the length of memory.
For a continuous map f : [−r0,∞) → Rd and t ≥ 0, let ft ∈ C be such that ft(θ) = f(t + θ) for
θ ∈ [−r0, 0]. In general, (ft)t≥0 is called the window (or segment) process of (f(t))t≥−r0 . P2(C )
stands for the space of all probability measures on C with the finite second-order moment, i.e.,
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µ(‖ · ‖2∞) :=
∫
C ‖ζ‖

2
∞µ(dζ) <∞ for µ ∈ P2(C ). Define the Wasserstein distance W2 on P2(C ) by

W2(µ, ν) = inf
π∈C(µ,ν)

(∫
C

∫
C
‖ζ1 − ζ2‖2∞π(dζ1, dζ2)

)1/2
, µ, ν ∈ P2(C ),

where C(µ, ν) signifies the collection of all probability measures on C × C with marginals µ and ν
(i.e., π ∈ C(µ, ν) such that π(·,C ) = µ(·) and π(C , ·) = ν(·)), respectively. Under the distance W2,
P2(C ) is a Polish space; see, [3, Lemma 5.3 & Theorem 5.4]. Let (B(t))t≥0 be an m-dimensional
Brownian motion defined on the probability space (Ω,F ,P) with the filtration (Ft)t≥0 satisfying
the usual condition (i.e., F0 contains all P-null sets and Ft = Ft+ :=

⋂
s>t Fs).

Throughout the paper, we fix the time horizon T > 0. For the scale parameter ε ∈ (0, 1), we
consider a path-distribution dependent SDE on (Rd, 〈·, ·〉, | · |) in the form

eq1eq1 (2.1) dXε(t) = b(Xε
t ,LXε

t
, θ)dt+ ε σ(Xε

t ,LXε
t
)dB(t), t ∈ (0, T ], Xε

0 = ξ ∈ C ,

where b : C ×P2(C )×Θ→ Rd and σ : C ×P2(C )→ Rd×Rm. In literature, the drift coefficient b
is also called the trend coefficient or damping coefficient or translation coefficient, and the diffusion
coefficient is also named as volatility coefficient. In (2.1), we assume that the drift b and the
diffusion σ are known apart from the parameter θ ∈ Θ and we stipulate that θ0 ∈ Θ is the true
value of θ ∈ Θ.

For any ζ1, ζ2 ∈ C and µ, ν ∈ P2(C ), we assume that

(A1) There exist α1, α2, β1, β2 > 0 such that

sup
θ∈Θ

|b(ζ1, µ, θ)− b(ζ2, ν, θ)|2 ≤ α1‖ζ1 − ζ2‖2∞ + α2W2(µ, ν)2,

and
‖σ(ζ1, µ)− σ(ζ2, ν)‖2 ≤ β1‖ζ1 − ζ2‖2∞ + β2W2(µ, ν)2;

(A2) (σσ∗)(ζ1, µ) is invertible, and there exists an L1 > 0 such that

‖(σσ∗)−1(ζ1, µ)− (σσ∗)−1(ζ2, ν)‖ ≤ L1{‖ζ1 − ζ2‖∞ + W2(µ, ν)};

(A3) For the initial value Xε
0 = ξ, there exists an L2 > 0 such that

|ξ(t)− ξ(s)| ≤ L2|t− s|, t, s ∈ [−r0, 0].

(A4) There exist constants K0, p0 > 0 such that

|b(ζ, µ, θ1)− b(ζ, µ, θ2)| ≤ K0(1 + ‖ζ‖∞ + W2(µ, δζ0))p0 |θ1 − θ2|, θ1, θ2 ∈ Θ,

where ζ0(s) ≡ 0 ∈ Rd for any s ∈ [−r0, 0].

We further assume that

(B1) There exists K1 > 0 such that

sup
θ∈Θ

‖(∇θb)(ζ1, µ, θ)− (∇θb)(ζ2, ν, θ)‖ ≤ K1{‖ζ1 − ζ2‖∞ + W2(µ, ν)},

where (∇θb) means the gradient operator w.r.t. the third spatial variable.
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(B2) There exists K2 > 0 such that

sup
θ∈Θ

‖(∇θ(∇θb∗))(ζ1, µ, θ)− (∇θ(∇θb∗))(ζ2, ν, θ)‖ ≤ K2{‖ζ1 − ζ2‖∞ + W2(µ, ν)}.

Definition 2.1. A continuous adapted process (Xε
t )t≥0 on C is called strong solution of (2.1) if

E‖Xε
t ‖2∞ +

∫ t

0
E{|b(Xε

s ,LXε
s
, θ)|+ ‖σ(Xε

t ,LXε
t
)‖2)ds} <∞, t ≥ 0,

and Xε(t) = Xε
t (0) satisfies P− a.s

Xε(t) = Xε
t (0) +

∫ t

0
b(Xε

s ,LXε
s
, θ)ds+

∫ t

0
σ(Xε

t ,LXε
t
)dB(s), t ≥ 0.

Before we move forward, let’s give some remarks. Under (A1), (2.1) admits a unique strong
solution (Xε(t))t∈[−r0,T ]; see, for instance, [10, Theorem 3.1]. For more details on existence and
uniqueness of strong solutions to distribution-dependent SDEs, we would like to refer to [5, 28, 40]
and references within. As far as existence and uniqueness of weak solutions, please consult [13,
20, 39] for reference. (B1) and (B2) are imposed merely to discuss the asymptotic distribution
of LSE constructed below; see Theorem 4.1. (A3) is put to analyze continuity of the window
process associated with (2.2); see Lemma 3.3 for more details. Obviously, (A2) holds provided
that σ(·, ·) ≡ σ ∈ Rd⊗Rm, a constant matrix, such that σσ∗ is invertible. Moreover, for the scalar
setting of (2.1), (A2) is also true in case of σ(x, µ) = 1 + |x| for any x ∈ R and µ ∈ P2(R).

Without loss of generality, given the stepsize δ > 0, let define M = r0
δ , n = T

δ for each
integers n,M ∈ N sufficiently large. Suppose that the solution process (Xε(t))t∈[−r0,T ] is observed
at regularly spaced time points tk = kδ for k = 0, 1, · · · , n. In this paper, our goal is to investigate
the LSE on the parameter θ ∈ Θ based on the sampling data (Xε(tk)

n
k=0 with small dispersion ε

and large sample size n (i.e., small step size δ).
Motivated by [24, 25, 34], for our present setting we construct the following contrast function

eq2eq2 (2.2) Ψn,ε(θ) = ε−2δ−1
n∑
k=1

P ∗k (θ)Λ−1
k−1Pk(θ).

Herein, for k = 1, · · · , n,

w1w1 (2.3) Pk(θ) := Xε(tk)−Xε(tk−1)− b(X̂ε
tk−1

,L
X̂ε
tk−1

, θ)δ and Λk := (σσ∗)(X̂ε
tk
,L

X̂ε
tk

),

where X̂ε
kδ = {X̂ε

kδ(s) : −r0 ≤ s ≤ 0} is a C -valued random variable defined as follows: for any
s ∈ [−(i+ 1)δ,−iδ], i = 1, · · · ,M − 1,

w2w2 (2.4) X̂ε
kδ(s) = Xε((k − i)δ) +

s+ iδ

δ
{Xε((k − i)δ)−Xε((k − i− 1)δ)},

i.e., X̂ε
kδ is the linear interpolation of Xε((k −M)δ), · · · , Xε(kδ). To achieve the LSE of θ ∈ Θ, it

suffices to choose an argument θ̂n,ε ∈ Θ such that

eq3eq3 (2.5) Ψn,ε(θ̂n,ε) = min
θ∈Θ

Ψn,ε(θ).
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Next, we write θ̂n,ε ∈ Θ satisfying (2.5) by

θ̂n,ε = arg min
θ∈Θ

Ψn,ε(θ).

Set
Φn,ε(θ) := ε2(Ψn,ε(θ)−Ψn,ε(θ0)).

It follows from (2.5) that

eq4eq4 (2.6) Φn,ε(θ̂n,ε) = min
θ∈Θ

Φn,ε(θ).

Likewise, we reformulate θ̂n,ε ∈ Θ ensuring (2.6) to hold true as

eq5eq5 (2.7) θ̂n,ε = arg min
θ∈Θ

Φn,ε(θ).

Through the whole paper, θ̂n,ε such that (2.7) holds is named as the LSE of θ ∈ Θ.
Before we end this section, we give some remarks.

Remark 2.1. For an invertible σ(·, ·) ∈ Rd ⊗ Rd, observe that

4Bk√
δ
≈ 1

ε−1
√
δ
σ−1(X̂ε

tk−1
,L

X̂ε
tk−1

)Pk(θ)

provided that the stepsize δ ∈ (0, 1) is sufficiently small. Then, we can design the contrast function
Ψn,ε(·) as

Ψn,ε(θ) = ε−2δ−1|σ−1(X̂ε
tk−1

,L
X̂ε
tk−1

)Pk(θ)|2

= ε−2δ−1P ∗k (θ)((σ−1)∗σ−1)(X̂ε
tk−1

,L
X̂ε
tk−1

)Pk(θ)

= ε−2δ−1P ∗k (θ)Λ−1
k−1Pk(θ).

Motivated by the invertible setup above, we establish the contrast function for the setting that the
diffusion σ(·, ·) need not to be invertible; see (2.2) for further details. On the other hand, if b(·, ·, θ)
is explicit w.r.t. the parameter θ, then the LSE θ̂n,ε can indeed be obtained by Fermat’s theorem.

Remark 2.2. Formally, the contrast function Ψn,ε can be defined as in (2.2) with X̂ε
tk

replaced
by Xε

tk
. Nevertheless, Xε

tk
cannot be available provided that (Xε(t))t∈[0,T ] is observed only at the

points t = kδ. So, in our paper, we approximate the window process Xε
tk

via the linear interpolation.
In detail, please see (2.4).

Remark 2.3. The contrast function can indeed be simulated as follows. In the first place, we
introduce the following stochastic interacting particle systems: for each i ∈ SN := {1, · · · , N}

dXε,i(t) = b(Xε,i
t , µε,Nt , θ)dt+ σ(Xε,i

t , µε,Nt )dW i(t), t ≥ 0, Xε,i
0 = Xε

0

where (W i(t), Xε,i
0 ), i ∈ SN , are independent copies of (W (t), X0), and µε,Nt := 1

N

∑d
j=1 δX̂ε,j

t
with

δx being the Dirac measure centered at the point x and

X̂ε,i
kδ (s) := Xε,i((k − i)δ) +

s+ iδ

δ
{Xε,i((k − i)δ)−Xε,i((k − i− 1)δ)}
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for s ∈ [−(i+ 1)δ,−iδ]. Set

P i,Nk (θ) := Xε,i(tk)−Xε,i(tk−1)− b(X̂ε,i
tk−1

, µε,Nkδ , θ)δ.

With P i,Nk (θ) in hand, we then define

Ψi,N
n,ε (θ) = ε−2δ−1

n∑
k=1

(P i,Nk )∗(θ)(θ)(Λi,Nk−1)−1P i,Nk (θ)

with Λi,Nk := (σσ∗)(X̂ε,i
tk
, µε,Ntk ), whence, the construction of estimator goes back to the classical set

up(see e.g. [8, 24, 25]). By the law of large number, we have Ψi,N
n,ε (θ) → Ψn,ε(θ) so that Ψn,ε can

be simulated numerically.

3 The consistency of LSE
sec2

First of all, let’s consider the following deterministic ordinary differential equation

eq6eq6 (3.1) dX0(t) = b(X0
t ,LX0

t
, θ0)dt, t > 0, X0

0 = ξ ∈ C .

Under (A1), (3.1) possesses a unique solution (X0(t))t≥−r0 . Herein, it is worth pointing out that
(2.1) and (3.1) share the same initial datum. For the sake of notation brevity, for a random variable
ζ ∈ C with Lζ ∈ P2(C ), let

c1c1 (3.2) Λ(ζ, θ, θ0) = b(ζ,Lζ , θ0)− b(ζ,Lζ , θ) and σ̂(ζ) = (σσ∗)−1(ζ,Lζ).

Set

e3e3 (3.3) Ξ(θ) :=

∫ T

0
Λ∗(X0

t , θ, θ0)σ̂(X0
t )Λ(X0

t , θ, θ0)dt, θ ∈ Θ,

where (X0
t ) is the segment process generated by the solution (X0(t)) to (3.1).

Our first main result, which is concerned with the consistency of the LSE of θ ∈ Θ, is stated as
below.

th1 Theorem 3.1. Let (A1)-(A4) hold and assume further Ξ(θ) > 0 for any θ ∈ Θ. Then

θ̂n,ε → θ0 in probability as ε→ 0 and n→∞.

The proof of Theorem 3.1 is based on several auxiliary lemmas below.

lem0 Lemma 3.2. Under (A1), for any p > 0, there exists a constant Cp,T > 0 such that

0r40r4 (3.4) E
(

sup
−r0≤t≤T

|Xε(t)|p
)
≤ Cp,T (1 + ‖ξ‖p∞)

and

r4r4 (3.5) sup
0≤t≤T

E‖X̂ε
bt/δcδ‖

p
∞ ≤ Cp,T (1 + ‖ξ‖p∞).
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Proof. For any t ∈ [0, T ], a direct calculation shows from (2.4) that

‖X̂ε
bt/δcδ‖∞

= sup
−r0≤v≤0

|X̂ε
bt/δcδ(v)|

= max
k=0,··· ,M−1

sup
−(k+1)δ≤v≤−kδ

∣∣∣1
δ

((k + 1)δ + v)Xε((bt/δc − k)δ)

− 1

δ
(kδ + v)Xε((bt/δc − k − 1)δ)

∣∣∣
≤ max

k=0,··· ,M−1
sup

−(k+1)δ≤v≤−kδ
(|Xε(bt/δcδ − kδ)|+ |Xε(bt/δcδ − (k + 1)δ)|)

≤ 2 sup
−r0≤s≤t

|Xε(s)|,

r5r5 (3.6)

where in the first inequality we have used the fact that for any v ∈ [−(k + 1)δ,−kδ],
1

δ
((k + 1)δ + v) ∈ [0, 1] and

1

δ
(kδ + v) ∈ [0, 1].

Once (3.4) is available, (3.5) can be obtained from (3.6). So, in what follows, it remains to show
that (3.4) holds true.

By Hölder’s inequality, it is sufficient to show that (3.4) holds for any p ≥ 2. From (A1), one
has, for any ζ ∈ C and µ ∈ P2(C ),

r2r2 (3.7) |b(ζ, µ, θ)|2 ≤ 2 {α1‖ζ‖2∞ + α2W2(µ, δζ0)2 + |b(ζ0, δζ0 , θ)|2},

and

r3r3 (3.8) ‖σ(ζ, µ)‖2 ≤ 2 {β1‖ζ‖2∞ + β2W2(µ, δζ0)2 + ‖σ(ζ0, δζ0)‖2},

where ζ0(s) = 0 ∈ Rd for any s ∈ [−r0, 0]. For k ≥ 0, define the stopping time τk := inf{t ≥ 0 :
‖Xε

t ‖∞ ≥ k} and for any p ≥ 2, by Hölder’s inequality and Burkhold-Davis-Gundy’s (BDG’s for
brevity) inequality (see, [26, Theorem 7.3, P.40]), we deduce from (3.7) and (3.8) that

1 + E
(

sup
−r0≤s≤t∧τk

|Xε(s)|p
)

≤ 1 + c ‖ξ‖p∞ + c tp−1E
∫ t∧τk

0
|b(Xε

s ,LXε
s
, θ)|pds+ cE

(∫ t∧τk

0
‖σ(Xε

s ,LXε
s
)‖2ds

)p/2
≤ 1 + c ‖ξ‖p∞ + c(tp−1 + t

p−2
2 )E

∫ t∧τk

0
{|b(Xε

s ,LXε
s
, θ)|p + ‖σ(Xε

s ,LXε
s
)‖p}ds

≤ 1 + c ‖ξ‖p∞ + c(tp−1 + t
p−2
2 )

∫ t

0
{1 + E‖Xε

s∧τk‖
p
∞ + W2(LXε

s
, δζ0)p}ds

≤ 1 + c ‖ξ‖p∞ + c(tp−1 + t
p−2
2 )

∫ t

0
{1 + E‖Xε

s∧τk‖
p
∞}ds.

c3.9c3.9 (3.9)

where c > 0 is a generic constant, whose value may change from line to line and we also used
Definition 2.1 in the last display. (3.9), together with (3.6), leads to

1 + E
(

sup
−r0≤s≤t∧τk

|Xε(s)|p
)
≤ 1 + c ‖ξ‖p∞ + c(tp−1 + t

p−2
2 )1 +

∫ t

0
E
(

sup
−r0≤r≤s∧τk

|Xε(r)|p
)

ds,

Then, the desired assertion (3.4) follows from Gronwall’s inequality, followed by Fatou’s lemma.
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le5 Lemma 3.3. Let (A1) be satisfied. Then, there is a constant CT > 0 such that

r6r6 (3.10) sup
0≤t≤T

E‖Xε
t −X0

t ‖2∞ ≤ CT ε2.

Proof. Note that

E‖Xε
t −X0

t ‖2∞ ≤ E
(

sup
0≤s≤t

|Xε(s)−X0(s)|2
)

=: A(t, ε), t ∈ [0, T ],

where we have used Xε
0 = X0

0 = ξ. By Hölder’s inequality, Doob’s submartingale inequality as well
as Itô’s isometry, we obtain from (A1), (3.4) and (3.8) that

A(t, ε) ≤ 2 t

∫ t

0
E|b(Xε

s ,LXε
s
, θ0)− b(X0

s ,LX0
s
, θ0)|2ds+ 2 ε2 E

(
sup

0≤s≤t

∣∣∣ ∫ s

0
σ(Xε

u,LXε
u
)dB(u)

∣∣∣2)
≤ 2 t

∫ t

0
E|b(Xε

s ,LXε
s
, θ0)− b(X0

s ,LX0
s
, θ0)|2ds+ 8 ε2

∫ t

0
E‖σ(Xε

s ,LXε
s
)‖2ds

≤ 2 t

∫ t

0
{α1E‖Xε

s −X0
s ‖2∞ + α2W2(LXε

s
,LX0

s
)2}ds

+ c ε2

∫ t

0
{1 + E‖Xε

s‖2∞ + W2(LXε
s
, δζ0)2}ds

≤ c t
∫ t

0
E‖Xε

s −X0
s ‖2∞ds+ c ε2

∫ t

0
{1 + E‖Xε

s‖2∞}ds

≤ c t
∫ t

0
A(s, ε)ds+ c(1 + C2,T ) ε2t, t ∈ [0, T ],

for a generic constant c > 0. As a result, (3.10) follows by Gronwall’s inequality.

Lemma 3.4. Assume that (A1) and (A3) hold. Then, for any β ∈ (0, 1), there exist constants
c, cβ > 0 such that

y2y2 (3.11) sup
0≤t≤T

E‖X̂ε
bt/δcδ −X

0
t ‖2∞ ≤ c (ε2 + cβδ

β).

Proof. Due to (3.10), for any t ∈ [0, T ],

E‖X̂ε
bt/δcδ −X

0
t ‖2∞ ≤ 2{E‖Xε

t − X̂ε
bt/δcδ‖

2
∞ + E‖Xε

t −X0
t ‖2∞}

≤ c{ε2 + E‖Xε
t − X̂ε

bt/δcδ‖
2
∞}.

r7r7 (3.12)

So, to get (3.11), we only need to show that, for any β ∈ (0, 1), there exists cβ > 0 such that

y4y4 (3.13) sup
t∈[0,T ]

E‖Xε
t − X̂ε

bt/δcδ‖
2
∞ ≤ cβδβ.

For any t ∈ [0, T ), there exists an integer k0 ∈ [0, n − 1] such that t ∈ [k0δ, (k0 + 1)δ) so that
bt/δc = k0. By Hölder’s inequality, for any β ∈ (0, 1),

E‖Xε
t − X̂ε

k0δ‖
2
∞ = E

(
sup

−r0≤v≤0
|Xε(t+ v)− X̂ε

k0δ(v)|2
)

≤
(
E
(

sup
−r0≤v≤0

|Xε(t+ v)− X̂ε
k0δ(v)|

2
1−β
))1−β

≤M1−β max
k=0,··· ,M−1

(
E
(

sup
−(k+1)δ≤v≤−kδ

|Xε(t+ v)− X̂ε
k0δ(v)|

2
1−β
))1−β

,
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where M > 0 is an integer such that r0 = Mδ. For v ∈ [−(k + 1)δ,−kδ], it follows from (2.4) that

Xε(t+ v)− X̂ε
k0δ(v) =

(k + 1)δ + v

δ

(
Xε(t+ v)−Xε((k0 − k)δ)

)
− kδ + v

δ

(
Xε(t+ v)−Xε((k0 − k − 1)δ)

)
.

As a consequence, we deduce that

E‖Xε
t − X̂ε

k0δ‖
2
∞

≤ cM1−β max
k=0,··· ,M−1

(
E
(

sup
(k0−k−1)δ≤s≤(k0−k+1)δ

|Xε(s)−Xε((k0 − k)δ)|
2

1−β
))1−β

+ cM1−β max
k=0,··· ,M−1

(
E
(

sup
(k0−k−1)δ≤s≤(k0−k+1)δ

|Xε(s)−Xε((k0 − k − 1)δ)|
2

1−β
))1−β

=: A1(ε, δ) +A2(ε, δ).

y5y5 (3.14)

For any t ∈ [lδ, (l+ 1)δ] with l = 0, 1, · · · , n− 1, we deduce from Hölder’s inequality and BDG’s
inequality that

E
(

sup
lδ≤s≤t

|Xε(s)−Xε(lδ)|
2

1−β
)

≤ c
{
δ

1+β
1−β

∫ t

lδ
E|b(Xε

s ,LXε
s
, θ)|

2
1−β ds+ E

(∫ t

lδ
‖σ(X̂ε

s ,LX̂ε
s
)‖2ds

) 1
1−β
}

≤ cδ
β

1−β

∫ t

lδ
{E|b(Xε

s ,LXε
s
, θ)|

2
1−β + E‖σ(Xε

s ,LXε
s
, θ)‖

2
1−β }ds.

y3y3 (3.15)

This, combining (3.7) with (3.8) and (3.15), yields that, for any t ∈ [lδ, (l + 1)δ],

E
(

sup
lδ≤s≤t

|Xε(s)−Xε(lδ)|
2

1−β
)
≤ c δ

β
1−β

∫ t

lδ
{1 + E‖Xε

s‖
2

1−β
∞ + W2(LXε

s
, δζ0)

2
1−β }ds

≤ c δ
1

1−β
{

1 + sup
lδ≤s≤t

E‖Xε
s‖

2
1−β
∞
}

≤ c δ
1

1−β ,

y1y1 (3.16)

where in the last procedure we have exploited (3.5).
In the sequel, we divide three cases to show the estimates on A1(ε, δ) and A2(ε, δ).

Case 1: k ≥ k0 + 1. With regard to such case, (k0 + 1 − k)δ ∈ [−r0, 0]. We infer from (A1) and
(3.14), in addition to Mδ = r0, that

A1(ε, δ) +A2(ε, δ) ≤ cM1−βδ = c r1−β
0 δβ.

Case 2: k0 = k. For this case, t ∈ [kδ, (k + 1)δ). Again, one gets from (3.14) that

A1(ε, δ) +A2(ε, δ)

≤ cM1−β max
k=0,··· ,M−1

(
E
(

sup
−δ≤s≤δ

|Xε(s)−Xε(0)|
2

1−β
))1−β

+ cM1−β max
k=0,··· ,M−1

(
E
(

sup
−δ≤s≤δ

|Xε(s)−Xε(−δ)|
2

1−β
))1−β

.

10



This, besides (A3) and (3.16), implies that

A1(ε, δ) +A2(ε, δ) ≤ c δβ + cM1−β max
k=0,··· ,M−1

(
E
(

sup
−δ≤s≤δ

|Xε(s)−Xε(0)|
2

1−β
))1−β

≤ c δβ + cM1−β max
k=0,··· ,M−1

(
E
(

sup
0≤s≤δ

|Xε(s)−Xε(0)|
2

1−β
))1−β

≤ c δβ + cM1−βδ

≤ c δβ.

Case 3: k ≤ k0 − 1. Also, by making use of (3.16), it follows that

A1(ε, δ) +A2(ε, δ)

≤ cM1−β max
k=0,··· ,M−1

(
E
(

sup
(k0−k−1)δ≤s≤(k0−k+1)δ

|Xε(s)−Xε((k0 − k − 1)δ)|
2

1−β
))1−β

+ cM1−β max
k=0,··· ,M−1

(
E|Xε((k0 − k − 1)δ)−Xε((k0 − k)δ)|

2
1−β
)1−β

≤ cM1−β max
k=0,··· ,M−1

(
E
(

sup
(k0−k−1)δ≤s≤(k0−k)δ

|Xε(s)−Xε((k0 − k − 1)δ)|
2

1−β
))1−β

+ cM1−β max
k=0,··· ,M−1

(
E
(

sup
(k0−k)δ≤s≤(k0−k+1)δ

|Xε(s)−Xε((k0 − k)δ)|
2

1−β
))1−β

+ cM1−β max
k=0,··· ,M−1

(
E|Xε((k0 − k − 1)δ)−Xε((k0 − k)δ)|

2
1−β
)1−β

≤ cδβ.

By summing up the three cases above, (3.13) holds true.

lem2 Lemma 3.5. Let (A1)-(A3) hold. Then,

Φ(1)
n,ε(θ) := δ

n∑
k=1

Λ∗(X̂ε
tk−1

, θ, θ0)σ̂(X̂ε
tk−1

)Λ(X̂ε
tk−1

, θ, θ0)→ Ξ(θ)a7a7 (3.17)

in L1 uniformly w.r.t. θ as ε→ 0 and δ → 0 (i.e., n→∞), in which Ξ(·) is introduced in (3.3).

Proof. It is straightforward to see that

δ
n∑
k=1

Λ∗(X̂ε
tk−1

, θ, θ0)σ̂(X̂ε
tk−1

)Λ(X̂ε
tk−1

, θ, θ0)−
∫ T

0
Λ∗(X0

s , θ, θ0)σ̂(X0
s )Λ(X0

s , θ, θ0)ds

=

∫ T

0

{
Λ∗(X̂ε

bs/δcδ, θ, θ0)σ̂(X̂ε
bs/δcδ)Λ(X̂ε

bs/δcδ, θ, θ0)− Λ∗(X0
s , θ, θ0)σ̂(X0

s )Λ(X0
s , θ, θ0)

}
ds

=

∫ T

0

(
Λ(X̂ε

bs/δcδ, θ, θ0)− Λ(X0
s , θ, θ0)

)∗
σ̂(X̂ε

bs/δcδ)Λ(X̂ε
bs/δcδ, θ, θ0)ds

+

∫ T

0
Λ∗(X0

s , θ, θ0)
(
σ̂(X̂ε

bs/δcδ)− σ̂(X0
s )
)

Λ(X̂ε
bs/δcδ, θ, θ0)ds

+

∫ T

0
Λ∗(X0

s , θ, θ0)σ̂(X0
s )
(

Λ(X̂ε
bs/δcδ, θ, θ0)− Λ(X0

s , θ, θ0)
)

ds

=: J1(ε, δ) + J2(ε, δ) + J3(ε, δ).
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Next, for any random variables ζ1, ζ2 ∈ C with Lζ1 ,Lζ2 ∈ P2(C ), observe from (A1) that

|Λ(ζ1, θ, θ0)− Λ(ζ2, θ, θ0)| ≤ |b(ζ1,Lζ1 , θ0)− b(ζ2,Lζ2 , θ0)|+ |b(ζ1,Lζ1 , θ)− b(ζ2,Lζ2 , θ)|
≤ c{‖ζ1 − ζ2‖∞ + W2(Lζ1 ,Lζ2)}.

a1a1 (3.18)

For a random variable ζ ∈ C with Lζ ∈ P2(C ), employing (A2) gives that

‖σ̂(ζ)‖ ≤ ‖σ̂(ζ)− σ̂(ζ0)‖+ ‖σ̂(ζ0)‖ ≤ c {1 + ‖ζ‖∞ + W2(Lζ , δζ0)}.a6a6 (3.19)

Consequently, combining (3.7) with (3.18) and (3.19), we deduce that

|J1(ε, δ)|+ |J3(ε, δ)|

≤ c
∫ T

0
{‖X̂ε

bs/δcδ −X
0
s ‖∞ + W2(L

X̂ε
bs/δcδ

,LX0
s
)}

× {1 + ‖X0
s ‖∞ + ‖X̂ε

bs/δcδ‖∞ + W2(L
X̂ε
bs/δcδ

, δζ0)}2ds

≤ c
∫ T

0

{
‖X̂ε
bs/δcδ −X

0
s ‖∞ +

√
E‖X̂ε

bs/δcδ −X0
s ‖2∞

}
× {1 + ‖X0

s ‖2∞ + ‖X̂ε
bs/δcδ‖

2
∞ + E‖X̂ε

bs/δcδ‖
2
∞}ds.

This, together with (3.5) and (3.11) as well as Hölder’s inequality, implies that

E|J1(ε, δ)|+ E|J3(ε, δ)|

≤ c
∫ T

0

√
E‖X̂ε

bs/δcδ −X0
s ‖2∞{1 + ‖X0

s ‖4∞ + E‖X̂ε
bs/δcδ‖

4
∞}ds

→ 0

a8a8 (3.20)

as ε→ 0 and δ → 0. Next, making use of (A2) and (3.7), we derive that

|J2(ε, δ)| ≤ c
∫ T

0
(1 + ‖X0

s ‖∞)(1 + ‖X̂ε
bs/δcδ‖∞ + W2(L

X̂ε
bs/δcδ

, δζ0))

×
(
‖X̂ε
bs/δcδ −X

0
s ‖∞ +

√
E‖X̂ε

bs/δcδ −X0
s ‖2∞

)
ds.

Again, using (3.5) and (3.11) and utilizing Hölder’s inequality gives that

E|J2(ε, δ)| ≤ c
∫ T

0

√
E‖X̂ε

bs/δcδ −X0
s ‖2∞{1 + E‖X̂ε

bs/δcδ‖
2
∞}ds

→ 0

a9a9 (3.21)

whenever ε→ 0 and δ → 0. Hence, (3.17) follows immediately from (3.20) and (3.21).

lem4 Lemma 3.6. Let (A1)-(A4) hold. Then,

s5s5 (3.22) Φ(2)
n,ε(θ) :=

n∑
k=1

Λ∗(X̂ε
tk−1

, θ, θ0)σ̂(X̂ε
tk−1

)Pk(θ0) −→ 0

in probability uniformly w.r.t. θ as ε→ 0 and δ → 0.
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Proof. Note that

Φ(2)
n,ε(θ) =

∫ T

0
Λ∗(X̂ε

bs/δcδ, θ, θ0)σ̂(X̂ε
bs/δcδ)(b(X

ε
s ,LXε

s
, θ0)− b(X̂ε

bs/δcδ,LX̂ε
bs/δcδ

, θ0))ds

+ ε

∫ T

0
Λ∗(X̂ε

bs/δcδ, θ, θ0)σ̂(X̂ε
bs/δcδ)σ(Xε

s ,LXε
s
)dB(s)

=: Υ1(ε, δ, θ) + Υ2(ε, δ, θ).

By means of (3.7), together with (3.5), it follows from Hölder’s inequality that, for some constants
C1, C2 > 0,

E|Υ1(ε, δ, θ)| ≤ C1

∫ T

0
E{(1 + ‖X̂ε

bt/δcδ‖
2
∞ + W2(L

X̂ε
bt/δcδ

, δζ0)2)

× ‖Xε
t − X̂ε

bt/δcδ‖∞ + W2(L
X̂ε
bt/δcδ

,LXε
t
)}dt

≤ C2

∫ T

0
{1 + E‖X̂ε

bt/δcδ‖
4
∞}(E‖Xε

t − X̂ε
bt/δcδ‖

2
∞)1/2dt

→ 0

s3s3 (3.23)

uniformly w.r.t. θ as ε→ 0 and δ → 0, where the last procedure is due to (3.13). Next, by BDG’s
inequality and Hölder’s inequality, we derive from (3.7), (3.8), and (3.19) followed by (3.4) and
(3.5) that

E|Υ2(ε, δ, θ)|p ≤ c εp E
(∫ T

0
|Λ∗(X̂ε

bt/δcδ, θ, θ0)σ̂(X̂ε
bt/δcδ)σ(Xε

t ,LXε
t
)|2dt

)p/2
≤ c εp

∫ T

0
E{|Λ(X̂ε

bt/δcδ, θ, θ0)|2 · ‖σ̂(X̂ε
bt/δcδ)‖

2 · ‖σ(Xε
t ,LXε

t
)‖2}p/2dt

≤ c εp
∫ T

0
E
{(

1 + ‖X̂ε
bt/δcδ‖

2
∞ + W2(L

X̂ε
bt/δcδ

, δζ0)2
)p/2

×
(

1 + ‖Xε
t ‖2∞ + W2(LXε

t
, δζ0)2

)p/2}
dt

≤ c εp
∫ T

0
{1 + E‖X̂ε

bt/δcδ‖
2p
∞ + E‖Xt‖2p∞}dt

≤ c εp, p > 2

s4s4 (3.24)

where c > 0 is a generic constant. On the other hand, for any θ1, θ2 ∈ Θ, by using the BDG
inequality and the Hölder inequality, it follows from (A4), (3.8), and (3.19) that

E|Υ2(ε, δ, θ1)−Υ2(ε, δ, θ2)|p

≤ c εp
∫ T

0
E{|b(X̂ε

bs/δcδ,LX̂ε
bs/δcδ

, θ1)− b(X̂ε
bs/δcδ,LX̂ε

bs/δcδ
, θ2)|2

× ·‖σ̂(X̂ε
bs/δcδ‖

2 · ‖σ(Xε
s ,LXε

s
}p/2dt

≤ c εp|θ1 − θ2|p, p > 2.

s66s66 (3.25)

Consequently, combining (3.23), (3.24) with (3.25), we obtain (3.22) from [11, Theorem 20, p378].
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To make the content self-contained, we reformulate [38, Theorem 5.9] as the following lemma.

lem3 Lemma 3.7. Let (Mn)n≥1 be random functions and M a fixed function of θ such that, for any
ε > 0,

sup
θ∈Θ
|Mn(θ)−M(θ)| −→ 0 in probability

and sup|θ−θ0|≥εM(θ) < M(θ0). Then, any sequence of estimators θ̂n with Mn(θ̂n) ≥ Mn(θ0) con-
verges in probability to θ0.

With Lemmas 3.5-3.7 in hand, we are in the position to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. From (2.2), we infer that

Φn,ε(θ)

= δ−1
n∑
k=1

{
P ∗k (θ)σ̂(X̂ε

tk−1
)Pk(θ)− P ∗k (θ0)σ̂(X̂ε

tk−1
)Pk(θ0)

}
= δ−1

n∑
k=1

{(
Pk(θ0) + Λ(X̂ε

tk−1
, θ, θ0)δ

)∗
σ̂(X̂ε

tk−1
)
(
Pk(θ0) + Λ(X̂ε

tk−1
, θ, θ0)δ

)
− P ∗k (θ0)σ̂(X̂ε

tk−1
)Pk(θ0)

}
= δ

n∑
k=1

Λ∗(X̂ε
tk−1

, θ, θ0)σ̂(X̂ε
tk−1

)Λ(X̂ε
tk−1

, θ, θ0) + 2

n∑
k=1

Λ∗(X̂ε
tk−1

, θ, θ0)σ̂(X̂ε
tk−1

)Pk(θ0)

= Φ(1)
n,ε(θ) + 2Φ(2)

n,ε(θ),

s6s6 (3.26)

where Φ
(1)
n,ε(θ) and Φ

(2)
n,ε(θ) are defined in (3.17) and (3.22), respectively. In terms of Lemmas 3.5

and 3.6, we deduce from Chebyshev’s inequality that

sup
θ∈Θ
| − Φn,ε(θ)− (−Ξ(θ))| → 0 in probability,

where Ξ(·) is defined as in (3.17). On the other hand, for any κ > 0, notice that

sup
|θ−θ0|≥κ

(−Ξ(θ)) < −Ξ(θ0) = 0

due to Ξ(·) > 0. Moreover, according to the notion of θ̂n,ε, one has −Φn,ε(θ̂n,ε) ≥ −Φn,ε(θ0) = 0. As
far as our present model is concerned, all of the assumptions in Lemma 3.7 with Mn(·) = −Φn,ε(·)
and M(·) = −Ξ(·) are fulfilled. As a consequence, we conclude that θ̂n,ε → θ0 in probability as
ε→ 0 and n→∞, as required.

4 The asymptotic distribution of LSE
sec3

In this section, to begin, we recall some materials on derivatives for matrix-valued functions and
introduce some notation. For a differentiable mapping V = (V1, · · · , Vd)∗ : Rp → Rd, its gradient
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operator (∇xV )(x) ∈ Rd ⊗ Rp w.r.t. the argument x = (x1, · · · , xp)∗ ∈ Rp is given by

A2A2 (4.1) (∇xV )(x) =


∂
∂x1

V1(x) ∂
∂x2

V1(x) · · · ∂
∂xp

V1(x)
∂
∂x1

V2(x) ∂
∂x2

V2(x) · · · ∂
∂xp

V2(x)

· · · · · · · · · · · ·
∂
∂x1

Vd(x) ∂
∂x2

Vd(x) · · · ∂
∂xp

Vd(x)

 .

If V = (V1, · · · , Vd) : Rp → (Rd)∗ (i.e., the d-dimensional raw vector) is differentiable, its gradient
operator (∇xV )(x) ∈ Rp ⊗ Rd w.r.t. the argument x = (x1, · · · , xp)∗ ∈ Rp reads as follows

A3A3 (4.2) (∇xV )(x) =


∂
∂x1

V1(x) ∂
∂x1

V2(x) · · · ∂
∂x1

Vd(x)
∂
∂x2

V1(x) ∂
∂x2

V2(x) · · · ∂
∂x2

Vd(x)

· · · · · · · · · · · ·
∂
∂xp

V1(x) ∂
∂xp

V2(x) · · · ∂
∂xp

Vd(x)

 .

So, from (4.1) and (4.2), one has ∇xV ∗(x) = (∇xV )∗(x) for a differentiable function V : Rp → Rd.
Let V = (Vij)p×d : R → Rp ⊗ Rd be differentiable. Then, the derivative ∂

∂xV (x) ∈ Rp ⊗ Rd of the
matrix-valued mapping V w.r.t. the scalar argument x ∈ R enjoys the form

A1A1 (4.3)
∂

∂x
V (x) =


∂
∂xV11(x) ∂

∂xV12(x) · · · ∂
∂xV1d(x)

∂
∂xV21(x) ∂

∂xV22(x) · · · ∂
∂xV2d(x)

· · · · · · · · · · · ·
∂
∂xVp1(x) ∂

∂xVp2(x) · · · ∂
∂xVpd(x)

 .

For a differentiable function V = (Vij)p×d : Rp → Rp ⊗ Rd, the gradient operator, denoted by
∇xV (x) ∈ Rp ⊗ Rpd, of V (x) w.r.t. the variable x = (x1, · · · , xp)∗ ∈ Rp is formulated as

(∇xV )(x) =
( ∂

∂x1
V (x),

∂

∂x2
V (x), · · · , ∂

∂xp
V (x)

)
,

where ∂
∂xi
V (x) is defined as in (4.3). Moreover, for a differentiable function V = (Vij)p×d : Rp → Rd,

we have

z1z1 (4.4) (∇(2)
x V ∗)(x) := (∇x(∇xV ∗))(x) = (∇x(∇xV )∗)(x).

For A = (A1, A2, · · · , Ap) ∈ Rp ⊗ Rpd with Ak ∈ Rp ⊗ Rd, k = 1, · · · , p, and B ∈ Rd, let’s define
A ◦B ∈ Rp ⊗ Rp by

A ◦B = (A1B,A2B, · · · , ApB).

Set, for any θ ∈ Θ,

z3z3 (4.5) I(θ) :=

∫ T

0
(∇θb)∗(X0

s ,LX0
s
, θ)σ̂(X0

s )(∇θb)(X0
s ,LX0

s
, θ)ds,

and, for any random variables ζ1, ζ2 ∈ C with Lζ1 ,Lζ2 ∈ P2(C ),

s0s0 (4.6) Υ(ζ1, ζ2, θ0) := (∇θb)∗(ζ1,Lζ1 , θ0)σ̂(ζ1)σ(ζ2,Lζ2).
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Furthermore, we set

K(θ) : = −2

∫ T

0
{(∇(2)

θ b∗)(X0
s ,LX0

s
, θ) ◦ (σ̂(X0

s )Λ(X0
s , θ, θ0))}ds, θ ∈ Θ.z2z2 (4.7)

Another main result in this paper is presented as below, which reveals the asymptotic distribu-
tion of θ̂n,ε.

th2 Theorem 4.1. Let the assumptions of Theorem 3.1 hold and suppose further that (A2) and (A3)
hold and that I(·) and K(·) defined in (4.5) and (4.7), respectively, are continuous. Then,

ε−1(θ̂n,ε − θ0)→ I−1(θ0)

∫ T

0
Υ(X0

s , X
0
s , θ0)dB(s) in probability

as ε→ 0 and n→∞, where I(·) and Υ(·) are given in (4.5) and (4.6), respectively.

Before we proceed to complete the proof of Theorem 4.1, let’s prepare the lemmas below.

le1 Lemma 4.2. Assume that (A1)- (A3) and (B1)- (B2) hold. Then,

s1s1 (4.8)

∫ T

0
Υ(X̂ε

bt/δcδ, X
ε
t , θ0)dB(t) −→

∫ T

0
Υ(X0

t , X
0
t , θ0)dB(t) in probability

as ε→ 0 and δ → 0. Moreover,

s2s2 (4.9) ε−1(∇θΦn,ε)(θ0)→ −2

∫ T

0
Υ(X0

s , X
0
s , θ0)dB(s) in probability

whenever ε→ 0 and δ → 0.

Proof. We first claim that

s7s7 (4.10)

∫ T

0
‖Υ(X̂ε

bt/δcδ, X
ε
t , θ0)−Υ(X0

t , X
0
t , θ0)‖2dt→ 0 in probability

as ε → 0 and δ → 0. For any κ > 0 and ρ > 0, by the aid of (4.10) and by making use of [6,
Theorem 2.6, P.63], we have

P
(∣∣∣ ∫ T

0
(Υ(X̂ε

bt/δcδ, X
ε
t , θ0)−Υ(X0

t , X
0
t , θ0))dB(t)

∣∣∣ ≥ κ)
≤ P

(∫ T

0
‖Υ(X̂ε

bt/δcδ, X
ε
t , θ0)−Υ(X0

t , X
0
t , θ0)‖2dt ≥ κ2ρ

)
+ ρ.

Thus, (4.8) follows from (4.10) and the arbitrariness of ρ. So, in what follows, it remains to show
that (4.10) holds true. Observe that

Υ(X̂ε
bt/δcδ, X

ε
t , θ0)−Υ(X0

t , X
0
t , θ0)

= {(∇θb)∗(X̂ε
bt/δcδ,LX̂ε

bt/δcδ
, θ0)− (∇θb)∗(X0

t ,LX0
t
, θ0)}σ̂(X̂ε

bt/δcδ)σ(Xε
t ,LXε

t
)

+ (∇θb)∗(X0
t ,LX0

t
, θ0){σ̂(X̂ε

bt/δcδ)− σ̂(X0
t )}σ(Xε

t ,LXε
t
)

+ (∇θb)∗(X0
t ,LX0

t
, θ0)σ̂(X0

t ){σ(Xε
t ,LXε

t
)− σ(X0

t ,LX0
t
)

=: Σ1(t, ε, δ) + Σ2(t, ε, δ) + Σ3(t, ε, δ).
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From (B1), (3.8), (3.13), and (3.19), it follows that∫ T

0
(‖Σ1(t, ε, δ)‖2 + ‖Σ2(t, ε, δ)‖2)dt

≤ c
∫ T

0
(1 + ‖Xε

t ‖4∞)‖X̂ε
bt/δcδ −X

0
t ‖2∞dt+ Π̂(ε, δ),

s8s8 (4.11)

where

Π̂(ε, δ) := c

∫ T

0
(1 + ‖Xε

t ‖4∞)E‖X̂ε
bt/δcδ −X

0
t ‖2∞dt.

For any ρ > 0, one gets from (4.11) that

P
(∫ T

0
(‖Σ1(t, ε, δ)‖2 + ‖Σ2(t, ε, δ)‖2)dt ≥ ρ

)
≤ P(Π̂(ε, δ) ≥ ρ/2) + P

(
c

∫ T

0
(1 + ‖Xε

t ‖4∞)‖X̂ε
bt/δcδ −X

0
t ‖2∞dt ≥ ρ

2

)
.

By the Chebyshev inequality, in addition to (3.5) and (3.11),

P(Π̂(ε, δ) ≥ ρ/2) ≤ c

ρ

∫ T

0
(1 + E‖Xε

t ‖4∞)E‖X̂ε
bt/δcδ −X

0
t ‖2∞ds

−→ 0

as ε→ 0 and δ → 0. Also, for any K > 0, by Chebyshev’s inequality, besides (3.5),

P
(
c

∫ T

0
(1 + ‖Xε

t ‖4∞)‖X̂ε
bt/δcδ −X

0
t ‖2∞dt ≥ ρ

2

)
≤ P

(
c(1 +K4)

∫ T

0
‖X̂ε
bt/δcδ −X

0
t ‖2∞dt ≥ ρ

4

)
+ P

(
c

∫ T

0
(1 + sup

−r0≤s≤t
|Xε

s |8)1{sup−r0≤s≤t |X
ε(t)|≥K}dt ≥

ρ

4

)
≤ c(1 +K4)

ρ

∫ T

0
E‖X̂ε

bt/δcδ −X
0
t ‖2∞dt

+
c

ρ

∫ T

0

(
1 + E

(
sup

−r0≤s≤t
|Xε

s‖12
∞

))1/2(
P
(

sup
−r0≤s≤t

|Xε(t)| ≥ K
))1/2

dt

≤ c(1 +K4)

ρ

∫ T

0
E‖X̂ε

bt/δcδ −X
0
t ‖2∞dt+

c

ρK

∫ T

0

(
1 + E

(
sup

−r0≤s≤t
|Xε

s‖2∞
))

dt.

where c > 0 is a generic constant. This, together with (3.11), leads to

a2a2 (4.12)

∫ T

0
(‖Σ1(t, ε, δ)‖2 + ‖Σ2(t, ε, δ)‖2)dt −→ 0 in probability

by taking ε → 0 and δ → 0 followed by taking K ↑ ∞. Furthermore, (A1), (3.10), (3.19) as well
as (B1) imply that

a3a3 (4.13)

∫ T

0
E‖Σ3(t, ε, δ)‖2dt ≤ c

∫ T

0
E‖Xε

t −X0
t ‖2∞dt −→ 0
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as ε→ 0. As a result, (4.10) follows from (4.12), (4.13) and Chebyshev’s inequality.
For any θ ∈ Θ and random variable ζ ∈ C with P2(C ), note from (3.2) that

(∇θΛ)(ζ, θ, θ0) = −(∇θb)(ζ,Lζ , θ).

A straightforward calculation shows that

(∇θΦn,ε)(θ) = 2

n∑
k=1

(∇θΛ)∗(X̂ε
tk−1

, θ, θ0)σ̂(X̂ε
tk−1

)
{
Pk(θ0) + δΛ(X̂ε

tk−1
, θ, θ0)

}
= −2

n∑
k=1

(∇θb)∗(X̂ε
tk−1

,L
X̂ε
tk−1

, θ)σ̂(X̂ε
tk−1

)Pk(θ).

Therefore, one has

ε−1(∇θΦn,ε)(θ0)

= −2

ε

∫ T

0
(∇θb)∗(X̂ε

bs/δcδ,LX̂ε
bs/δcδ

, θ)σ̂(X̂ε
bs/δcδ)(b(X

ε
s ,LXε

s
, θ)− b(Xε

bs/δcδ,LXε
bs/δcδ

, θ))ds

− 2

∫ T

0
Υ(X̂ε

bs/δcδ, X
ε
s , θ0)dB(s)

= Π(ε, δ)− 2

∫ T

0
Υ(X̂ε

bs/δcδ, X
ε
s , θ0)dB(s).

Following the argument to obtain (3.20), we derive that

s00s00 (4.14) E|Π(ε, δ)| → 0

as ε→ 0 and δ → 0. Subsequently, (4.9) follows from (4.8) and (4.14) immediately.

lem3.3 Lemma 4.3. Under the assumptions of Theorem 4.1,

a11a11 (4.15) (∇(2)
θ Φn,ε)(θ) −→ K0(θ) := K(θ) + 2I(θ) in probability

as ε→ 0, n→∞, where (∇(2)
θ Φn,ε), I(θ),K(θ) are defined as in (4.4), (4.5), and (4.7), respectively.

Proof. By the chain rule, we infer from (4.4) that

(∇(2)
θ Φn,ε)(θ) = −2

n∑
k=1

(∇(2)
θ b∗)(X̂ε

tk−1
,L

X̂ε
tk−1

, θ) ◦
(
σ̂(X̂ε

tk−1
)Pk(θ)

)
− 2

n∑
k=1

(∇θb)∗(X̂ε
tk−1

,L
X̂ε
tk−1

, θ)σ̂(X̂ε
tk−1

)(∇θPk)(θ)

= −2

n∑
k=1

(∇(2)
θ b∗)(X̂ε

tk−1
,L

X̂ε
tk−1

, θ) ◦
(
σ̂(X̂ε

tk−1
)Pk(θ0)

)
− 2 δ

n∑
k=1

{
(∇(2)

θ b∗)(X̂ε
tk−1

,L
X̂ε
tk−1

, θ) ◦
(
σ̂(X̂ε

tk−1
)Λ(X̂ε

tk−1
, θ, θ0)

)
− (∇θb)∗(X̂ε

tk−1
,L

X̂ε
tk−1

, θ)σ̂(X̂ε
tk−1

)(∇θb)(X̂ε
tk−1

,L
X̂ε
tk−1

, θ)
}

=: Θ1(ε, δ) + Θ2(ε, δ).
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Taking (B2) into consideration and mimicking the argument of Lemma 3.6, we obtain that

Θ1(ε, δ)→ 0 in probability as ε→ 0, δ → 0.

Observe that

Θ2(ε, δ) = −2

∫ T

0

{
(∇(2)

θ b∗)(X̂ε
bs/δcδ,LX̂ε

bs/δcδ
, θ) ◦

(
σ̂(X̂ε

bs/δcδ)Λ(X̂ε
bs/δcδ, θ, θ0)

)
ds

+ 2

∫ T

0

{
(∇θb)∗(X̂ε

bs/δcδ,LX̂ε
bs/δcδ

, θ)σ̂(X̂ε
bs/δcδ)(∇θb)(X̂

ε
bs/δcδ,LX̂ε

bs/δcδ
, θ)ds

=: Ψ1(ε, δ) + Ψ2(ε, δ).

Carrying out an analogous argument to derive Lemma 3.5, we infer that

z4z4 (4.16) Ψ1(ε, δ)→ K(θ) in probability as ε→ 0, δ → 0

by taking (B2) into account, and that

z5z5 (4.17) Ψ2(ε, δ)→ 2I(θ) in probability as ε→ 0, δ → 0

by using (B1). Thus, the desired assertion follows from (4.16) and (4.17) immediately.

Now we start to finish the argument of Theorem 4.1 on the basis of the previous lemmas.

Proof of Theorem 4.1. The original idea on the proof of Theorem 4.1 is taken from [36]. To
make the content self-contained, we herein provide a sketch of the proof. In terms of Theorem 3.1,
there exists a sequence ηn,ε → 0 as ε → 0 and n → ∞ such that θ̂n,ε ∈ Bηn,ε(θ0) ⊂ Θ, P-a.s. By
the Taylor expansion, one has

a4a4 (4.18) (∇θΦn,ε)(θ̂n,ε) = (∇θΦn,ε)(θ0) +Dn,ε(θ̂n,ε − θ0), θ̂n,ε ∈ Bηn,ε(θ0)

with

Dn,ε :=

∫ 1

0
(∇(2)

θ Φn,ε)(θ0 + u(θ̂n,ε − θ0))du, θ̂n,ε ∈ Bηn,ε(θ0).

Observe that, for θ̂n,ε ∈ Bηn,ε(θ0),

‖Dn,ε −K0(θ0)‖ ≤ ‖Dn,ε − (∇(2)
θ Φn,ε)(θ0)‖+ ‖(∇(2)

θ Φn,ε)(θ0)−K0(θ0)‖

≤
∫ 1

0
‖(∇(2)

θ Φn,ε)(θ0 + u(θ̂n,ε − θ0))− (∇(2)
θ Φn,ε)(θ0)‖du

+ ‖(∇(2)
θ Φn,ε)(θ0)−K0(θ0)‖

≤ sup
θ∈Bηn,ε (θ0)

‖(∇(2)
θ Φn,ε)(θ)− (∇(2)

θ Φn,ε)(θ0)‖+ ‖(∇(2)
θ Φn,ε)(θ0)−K0(θ0)‖

≤ sup
θ∈Bηn,ε (θ0)

‖(∇(2)
θ Φn,ε)(θ)−K0(θ)‖+ sup

θ∈Bηn,ε (θ0)
‖K0(θ)−K0(θ0)‖

+ 2‖(∇(2)
θ Φn,ε)(θ0)−K0(θ0)‖,
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in which K0(·) is introduced in (4.15). This, together with Lemma 4.3 and continuity of K0(·),
gives that

a0a0 (4.19) Dn,ε → K0(θ0) in probability

as ε→ 0 and n→∞. By following the exact line of [25, Theorem 2.2], we can deduce that Dn,ε is
invertible on the set

Γn,ε :=
{

sup
θ∈Bηn,ε (θ0)

‖(∇(2)
θ Φn,ε)(θ)−K0(θ0)‖ ≤ α

2
, θ̂n,ε ∈ Bηn,ε(θ0)

}
for some constant α > 0. Let

Dn,ε = {Dn,ε is invertible , θ̂n,ε ∈ Bηn,ε(θ0)}.

By virtue of Lemma 4.3, one has

n1n1 (4.20) lim
ε→0,n→∞

P
(

sup
θ∈Bηn,ε (θ0)

‖(∇(2)
θ Φn,ε)(θ)−K0(θ0)‖ ≤ α

2

)
= 1.

On the other hand, recall that

n2n2 (4.21) lim
ε→0,n→∞

P
(
θ̂n,ε ∈ Bηn,ε(θ0)

)
= 1.

By the fundamental fact: for any events A,B, P(AB) = P(A) + P(B)− P(A ∪B), we observe that

1 ≥ P(Γn,ε) ≥ P
(

sup
θ∈Bηn,ε (θ0)

‖(∇(2)
θ Φn,ε)(θ)−K0(θ0)‖ ≤ α

2

)
+ P

(
θ̂n,ε ∈ Bηn,ε(θ0)

)
− 1.

n3n3 (4.22)

Thus, taking advantage of (4.20), (4.21) as well as (4.22), we deduce from Sandwich theorem that

n4n4 (4.23) P(Dn,ε) ≥ P(Γn,ε)→ 1

as ε→ 0 and n→∞. Set
Un,ε := Dn,ε1Dn,ε + Ip×p1Dc

n,ε
,

where Ip×p is a p× p identity matrix. For Sn,ε := ε−1(θ̂n,ε − θ0), we deduce from (4.18) that

Sn,ε = Sn,ε1Dn,ε + Sn,ε1Dc
n,ε

= U−1
n,εDn,εSn,ε1Dn,ε + Sn,ε1Dc

n,ε

= ε−1U−1
n,ε{(∇θΦn,ε)(θ̂n,ε)− (∇θΦn,ε)(θ0)}1Dn,ε + Sn,ε1Dc

n,ε

= −ε−1U−1
n,ε(∇θΦn,ε)(θ0)1Dn,ε + Sn,ε1Dc

n,ε

→ I−1(θ0)

∫ T

0
Υ(X0

s , θ0)dB(s),

as ε → 0 and n → ∞, where in the forth identity we dropped the term (∇θΦn,ε)(θ̂n,ε) according
to the notion of LSE and Fermat’s lemma, and the last display follows from Lemma 4.2, (4.19) as
well as (4.23) and by noting K0(θ0) = 2I(θ0). We therefore complete the proof.
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5 An illustrative example
sec4

In this section, we intend to provide an example to demonstrate our main results. We first give the
set-up of numerical example as following.

Example 5.1. Let θ = (θ(1), θ(2))∗ ∈ Θ0 := (c1, c2) × (c3, c4) ⊂ R2 for some c1 < c2 and c3 < c4.
For any ε ∈ (0, 1), consider the following scalar path-distribution dependent SDE

d1d1 (5.1) dXε(t) =
(
θ(1) + θ(2)

∫
C
b0(Xε

t , ζ)LXε
t
(dζ)

)
dt+ ε(1 + |Xε(t)|) dB(t), t ∈ (0, T ]

with the initial value Xε
0 = ξ, where θ ∈ Θ0 is an unknown parameter with the true value θ0 =

(θ
(1)
0 , θ

(2)
0 ) ∈ Θ0, and b0 : C × C → R satisfy the global Lipschitz condition, i.e., there exists a

constant K > 0 such that

d2d2 (5.2) |b0(ζ1, ζ2)− b(ζ ′1, ζ ′2)| ≤ K{|ζ1 − ζ ′1|+ |ζ2 − ζ ′2|}, ζ1, ζ2, ζ
′
1, ζ
′
2 ∈ C .

For any ζ ∈ C , µ ∈ P2(C ) and θ = (θ(1), θ(2))∗, set

b(ζ, µ, θ) := θ(1) + θ(2)

∫
C
b0(ζ, ζ ′)µ(dζ ′) and σ(ζ, µ) := 1 + |ζ(0)|.

Then (5.1) can be reformulated as path distribution-dependent SDE (2.1).

5.1 Theoretical Result on Example 5.1

In this subsection, for (5.1) we aim to examine that all the assumptions imposed in Theorems 3.1
and 4.1 are applicable to the model (5.1). By a direct calculation, it follows from (5.2) that, for
any µ, ν ∈ P2(C ) and ζ1, ζ2 ∈ C ,

|b(ζ1, µ, θ)− b(ζ2, ν, θ)| = |θ(2)| ·
∣∣∣ ∫

C
b0(ζ1, ζ)µ(dζ)−

∫
C
b0(ζ2, ζ

′)ν(dζ ′)
∣∣∣

≤ |θ(2)|
∫

C

∫
C
|b0(ζ1, ζ)− b0(ζ2, ζ

′)|π(dζ,dζ ′)

≤ K|θ(2)|
∫

C

∫
C
{|ζ1 − ζ2|+ |ζ − ζ ′|}π(dζ,dζ ′)

≤ K(|c3| ∨ |c4|){|ζ1 − ζ2|+ W1(µ, ν)}
≤ K(|c3| ∨ |c4|){|ζ1 − ζ2|+ W2(µ, ν)},

d3d3 (5.3)

in which π ∈ C(µ, ν). On the other hand, for any x, y ∈ R and µ, ν ∈ P2(R), one has

|σ(x, µ)− σ(y, ν)| ≤ |x− y|.

Hence, the assumption (A1) holds for (5.1). Next, for any x, y ∈ R and µ, ν ∈ P2(R), we have

|σ−2(x, µ)− σ−2(y, ν)| =
∣∣∣ 1

(1 + |x|)2
− 1

(1 + |y|)2

∣∣∣ ≤ 4|x− y|.

So, (A2) is fulfilled. Furthermore, observe that

d4d4 (5.4) (∇θb)(ζ, µ, θ) =
(

1,

∫
C
b0(ζ, ζ ′)µ(dζ ′)

)∗
and (∇θ(∇θb))(ζ, µ, θ) = 02×2,
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where 02×2 stands for the 2× 2-zero matrix. Thus, (5.3) yields that both (B1) and (B2) hold. We
further assume that the initial value is global Lipschitz, i.e., there exists an L > 0 such that

|ξ(t)− ξ(s)| ≤ L|t− s|, t, s ∈ [−r0, 0].

As a consequence, concerning (5.1), the assumptions (A1)-(A3) and (B1)-(B2) hold, respectively.

dXε
t = (θ(1) + θ(2)x2

t )dt+ ε(1 +Xε)dB(t)

According to (2.2), the contrast function admits the form below

Ψn,ε(θ) = ε−2δ−1
n∑
k=1

1

(1 + |Xε(tk−1)|)2

×
∣∣∣Xε(tk)−Xε(tk−1)−

(
θ(1) + θ(2)

∫
C
b0(X̂ε

tk−1
, ζ)L

X̂ε
tk−1

(dζ)
)
δ
∣∣∣2.

Observe that

∂

∂θ(1)
Ψn,ε(θ) = −2 ε−2

n∑
k=1

1

(1 + |Xε(tk−1)|)2

{
Xε(tk)−Xε(tk−1)

−
(
θ(1) + θ(2)

∫
C
b0(X̂ε

tk−1
, ζ)L

X̂ε
tk−1

(dζ)
)
δ
}
,

and

∂

∂θ(2)
Ψn,ε(θ) = −2 ε−2

n∑
k=1

1

(1 + |Xε(tk−1)|)2

{
Xε(tk)−Xε(tk−1)

−
(
θ(1) + θ(2)

∫
C
b0(X̂ε

tk−1
, ζ)L

X̂ε
tk−1

(dζ)
)
δ
}∫

C
b0(X̂ε

tk−1
, ζ)L

X̂ε
tk−1

(dζ).

Subsequently, solving the equation below

∂

∂θ(1)
Ψn,ε(θ) =

∂

∂θ(2)
Ψn,ε(θ) = 0,

we obtain the LSE θ̂n,ε = (θ̂
(1)
n,ε, θ̂

(2)
n,ε)∗ of the unknown parameter θ = (θ(1), θ(2))∗ ∈ Θ0 possesses

the formula

θ̂(1)
n,ε =

A2A5 −A3A4

δ(A1A5 −A2
4)

and θ̂(2)
n,ε =

A1A3 −A2A4

δ(A1A5 −A2
4)
,

where

A1 :=

n∑
k=1

1

(1 + |Xε(tk−1)|)2
, A2 :=

n∑
k=1

Xε(tk)−Xε(tk−1)

(1 + |Xε(tk−1)|)2
,

A3 :=
n∑
k=1

(Y ε(tk)−Xε(tk−1))
∫
C b0(X̂ε

tk−1
, ζ)L

X̂ε
tk−1

(dζ)

(1 + |Xε(tk−1)|)2
, A4 :=

n∑
k=1

∫
C b0(X̂ε

tk−1
, ζ)L

X̂ε
tk−1

(dζ)

(1 + |Xε(tk−1)|)2
,

22



and

A5 :=
n∑
k=1

( ∫
C b0(X̂ε

tk−1
, ζ)L

X̂ε
tk−1

(dζ)
)2

(1 + |Xε(tk−1)|)2
.

In terms of Theorem 3.1, θ̂n,ε → θ in probability as ε→ 0 and n→∞. Next, from (5.4), it follows
that

I(θ0) =

∫ T

0

1

(1 + |X0
s |)2

(
1 b0(X0

s , X
0
s )

b0(X0
s , X

0
s ) b0(X0

s , X
0
s )2

)
ds,

and, for ζ ∈ C , ∫ T

0
Υ(X0

s , X
0
s , θ0)dB(s) =

∫ T

0

1

1 + |X0(s)|

(
1

b0(X0
s , X

0
s )

)
dB(s).

At last, according to Theorem 4.1, we conclude that

ε−1(θ̂n,ε − θ0)→ I−1(θ0)

∫ T

0
Υ(X0

s , X
0
s , θ0)dB(s) in probability

as ε→ 0 and n→∞ provided that I(·) is positive definite.

5.2 Numerical Result on Example 5.1

The numerical results are given in this subsection, aiming to illustrate the performance of proposed
estimation on empirical problems. The simulating SDE corresponding to (5.1) is defined as follows:

dXε(t) = (θ(1) + θ(2)(Xε(t) +Xε(t− r0) + EXε(t)))dt+ ε(1 +Xε(t))dB(t)

where the true parameters are θ = (θ(1), θ(2)) = (0, 1.7000e−4). By applying Euler-Maruyama
scheme, we estimate θ where the perturbation scale ε is sufficiently small and sample size n is
relatively large .

The data are sampled from the true function (given θ) with random noisy added as observation
errors. Then the estimated parameters θ̂ are computed according to our approach. We set particle
size n = 100 and n = 1000 respectively with different levels of diffusion term.The experiments are
repeated 1000 times, the mean and the stand deviation of θ̂ are show in Table 1. In Case(a), we set
ε = 0.001, the lowest relative error among three cases can be realised. (see Figure 1) . We gradually
enlarge the level of diffusion part, then increasing of estimator error can be observed (see Figure
2 and 3), which complies with Theorem 3.1. The largest error (4.26%) is obtained while ε = 0.1,
where the true function and the estimated function are oscillated due to large diffusion, while the
error is still within the reasonable range. According to case (a)-(c) in Table 1, we observed that
the larger number of particles leads to smaller standard deviation.

6 Conclusion

In the present paper, we established the LSE scheme for the stochastic parameter estimation of
the path-distribution dependent SDEs. The numerical result is well coincide with theoretical result
of Theorem 3.1. We would like to point out that the Maximum Likelihood estimation and the
Bayesian estimation can also be used for stochastic parameter estimation with path-distribution
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Table 1: Estimation Errors for the Example 5.1

True value θ = 1.7000e−4 Estimation Error(Avg) Estimator Std

Case a: ε = 0.001

n=1000 (1.7272e−4)1.60% 0.2615e−4

n=100 (1.7392e−4)2.31% 0.7525e−4

Case b: ε = 0.01

n=1000 (1.7331e−4)1.95% 0.7704e−4

n=100 (1.7349e−4)2.05% 0.9929e−4

Case c: ε = 0.1

n=1000 (1.6275e−4)4.26% 1.2343e−4

n=100 (1.7596e−4)3.51% 1.7317e−4

tab:PPer

dependent SDEs under real applications diversely and widely as in economics, finance, physics etc..
In our future work, we plan to study maximum likelihood estimation of certain parameters for the
Black-Scholes or business cycle models.
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JM [13] Jourdain, B., Méléard, S., Propagation of chaos and fluctuations for a moderate model with smooth
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