No Cover Image

Journal article 498 views 90 downloads

Dilatonic states near holographic phase transitions

Daniel Elander, Maurizio Piai Orcid Logo, John Roughley

Physical Review D, Volume: 103, Issue: 10

Swansea University Authors: Maurizio Piai Orcid Logo, John Roughley

  • PhysRevD.103.106018.pdf

    PDF | Version of Record

    Released under the terms of the Creative Commons Attribution 4.0 International license

    Download (4.8MB)

Abstract

The spectrum of bound states of special strongly coupled confining field theories might include a parametrically light dilaton, associated with the formation of enhanced condensates that break (approximate) scale invariance spontaneously. It has been suggested in the literature that such a state may...

Full description

Published in: Physical Review D
ISSN: 2470-0010 2470-0029
Published: American Physical Society (APS) 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa56613
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2021-04-27T09:19:44Z
last_indexed 2023-01-11T14:35:56Z
id cronfa56613
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-10-25T13:58:50.7793803</datestamp><bib-version>v2</bib-version><id>56613</id><entry>2021-04-01</entry><title>Dilatonic states near holographic phase transitions</title><swanseaauthors><author><sid>3ce295f2c7cc318bac7da18f9989d8c3</sid><ORCID>0000-0002-2251-0111</ORCID><firstname>Maurizio</firstname><surname>Piai</surname><name>Maurizio Piai</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a455f6e7908ee14413cb31e9f6f2f0fb</sid><firstname>John</firstname><surname>Roughley</surname><name>John Roughley</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-04-01</date><deptcode>SPH</deptcode><abstract>The spectrum of bound states of special strongly coupled confining field theories might include a parametrically light dilaton, associated with the formation of enhanced condensates that break (approximate) scale invariance spontaneously. It has been suggested in the literature that such a state may arise in connection with the theory being close to the unitarity bound in holographic models. We extend these ideas to cases where the background geometry is non-AdS, and the gravity description of the dual confining field theory has a top-down origin in supergravity.We exemplify this programme by studying the circle compactification of Romans six-dimensional half-maximal supergravity. We uncover a rich space of solutions, many of which were previously unknown in the literature. We compute the bosonic spectrum of excitations, and identify a tachyonic instability in a region of parameter space for a class of regular background solutions. A tachyon only exists along an energetically disfavoured (unphysical) branch of solutions of the gravity theory; we find evidence of a first-order phase transition that separates this region of parameter space from the physical one. Along the physical branch of regular solutions, one of the lightest scalar particles is approximately a dilaton, and it is associated with a condensate in the underlying theory. Yet, because of the location of the phase transition, its mass is not parametrically small, and it is, coincidentally, the next-to-lightest scalar bound state, rather than the lightest one.</abstract><type>Journal Article</type><journal>Physical Review D</journal><volume>103</volume><journalNumber>10</journalNumber><paginationStart/><paginationEnd/><publisher>American Physical Society (APS)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2470-0010</issnPrint><issnElectronic>2470-0029</issnElectronic><keywords/><publishedDay>18</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-05-18</publishedDate><doi>10.1103/physrevd.103.106018</doi><url/><notes/><college>COLLEGE NANME</college><department>Physics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SPH</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-10-25T13:58:50.7793803</lastEdited><Created>2021-04-01T12:50:33.9460580</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Daniel</firstname><surname>Elander</surname><order>1</order></author><author><firstname>Maurizio</firstname><surname>Piai</surname><orcid>0000-0002-2251-0111</orcid><order>2</order></author><author><firstname>John</firstname><surname>Roughley</surname><order>3</order></author></authors><documents><document><filename>56613__19929__1d5fcad7624a47d5af4f8265bfc4921a.pdf</filename><originalFilename>PhysRevD.103.106018.pdf</originalFilename><uploaded>2021-05-18T16:23:30.5028296</uploaded><type>Output</type><contentLength>5028936</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Released under the terms of the Creative Commons Attribution 4.0 International license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-10-25T13:58:50.7793803 v2 56613 2021-04-01 Dilatonic states near holographic phase transitions 3ce295f2c7cc318bac7da18f9989d8c3 0000-0002-2251-0111 Maurizio Piai Maurizio Piai true false a455f6e7908ee14413cb31e9f6f2f0fb John Roughley John Roughley true false 2021-04-01 SPH The spectrum of bound states of special strongly coupled confining field theories might include a parametrically light dilaton, associated with the formation of enhanced condensates that break (approximate) scale invariance spontaneously. It has been suggested in the literature that such a state may arise in connection with the theory being close to the unitarity bound in holographic models. We extend these ideas to cases where the background geometry is non-AdS, and the gravity description of the dual confining field theory has a top-down origin in supergravity.We exemplify this programme by studying the circle compactification of Romans six-dimensional half-maximal supergravity. We uncover a rich space of solutions, many of which were previously unknown in the literature. We compute the bosonic spectrum of excitations, and identify a tachyonic instability in a region of parameter space for a class of regular background solutions. A tachyon only exists along an energetically disfavoured (unphysical) branch of solutions of the gravity theory; we find evidence of a first-order phase transition that separates this region of parameter space from the physical one. Along the physical branch of regular solutions, one of the lightest scalar particles is approximately a dilaton, and it is associated with a condensate in the underlying theory. Yet, because of the location of the phase transition, its mass is not parametrically small, and it is, coincidentally, the next-to-lightest scalar bound state, rather than the lightest one. Journal Article Physical Review D 103 10 American Physical Society (APS) 2470-0010 2470-0029 18 5 2021 2021-05-18 10.1103/physrevd.103.106018 COLLEGE NANME Physics COLLEGE CODE SPH Swansea University 2022-10-25T13:58:50.7793803 2021-04-01T12:50:33.9460580 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Daniel Elander 1 Maurizio Piai 0000-0002-2251-0111 2 John Roughley 3 56613__19929__1d5fcad7624a47d5af4f8265bfc4921a.pdf PhysRevD.103.106018.pdf 2021-05-18T16:23:30.5028296 Output 5028936 application/pdf Version of Record true Released under the terms of the Creative Commons Attribution 4.0 International license true eng https://creativecommons.org/licenses/by/4.0/
title Dilatonic states near holographic phase transitions
spellingShingle Dilatonic states near holographic phase transitions
Maurizio Piai
John Roughley
title_short Dilatonic states near holographic phase transitions
title_full Dilatonic states near holographic phase transitions
title_fullStr Dilatonic states near holographic phase transitions
title_full_unstemmed Dilatonic states near holographic phase transitions
title_sort Dilatonic states near holographic phase transitions
author_id_str_mv 3ce295f2c7cc318bac7da18f9989d8c3
a455f6e7908ee14413cb31e9f6f2f0fb
author_id_fullname_str_mv 3ce295f2c7cc318bac7da18f9989d8c3_***_Maurizio Piai
a455f6e7908ee14413cb31e9f6f2f0fb_***_John Roughley
author Maurizio Piai
John Roughley
author2 Daniel Elander
Maurizio Piai
John Roughley
format Journal article
container_title Physical Review D
container_volume 103
container_issue 10
publishDate 2021
institution Swansea University
issn 2470-0010
2470-0029
doi_str_mv 10.1103/physrevd.103.106018
publisher American Physical Society (APS)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 1
active_str 0
description The spectrum of bound states of special strongly coupled confining field theories might include a parametrically light dilaton, associated with the formation of enhanced condensates that break (approximate) scale invariance spontaneously. It has been suggested in the literature that such a state may arise in connection with the theory being close to the unitarity bound in holographic models. We extend these ideas to cases where the background geometry is non-AdS, and the gravity description of the dual confining field theory has a top-down origin in supergravity.We exemplify this programme by studying the circle compactification of Romans six-dimensional half-maximal supergravity. We uncover a rich space of solutions, many of which were previously unknown in the literature. We compute the bosonic spectrum of excitations, and identify a tachyonic instability in a region of parameter space for a class of regular background solutions. A tachyon only exists along an energetically disfavoured (unphysical) branch of solutions of the gravity theory; we find evidence of a first-order phase transition that separates this region of parameter space from the physical one. Along the physical branch of regular solutions, one of the lightest scalar particles is approximately a dilaton, and it is associated with a condensate in the underlying theory. Yet, because of the location of the phase transition, its mass is not parametrically small, and it is, coincidentally, the next-to-lightest scalar bound state, rather than the lightest one.
published_date 2021-05-18T04:11:41Z
_version_ 1763753802399219712
score 11.013148