Journal article 642 views 108 downloads
Dilatonic states near holographic phase transitions
Physical Review D, Volume: 103, Issue: 10
Swansea University Authors: Maurizio Piai , John Roughley
-
PDF | Version of Record
Released under the terms of the Creative Commons Attribution 4.0 International license
Download (4.8MB)
DOI (Published version): 10.1103/physrevd.103.106018
Abstract
The spectrum of bound states of special strongly coupled confining field theories might include a parametrically light dilaton, associated with the formation of enhanced condensates that break (approximate) scale invariance spontaneously. It has been suggested in the literature that such a state may...
Published in: | Physical Review D |
---|---|
ISSN: | 2470-0010 2470-0029 |
Published: |
American Physical Society (APS)
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa56613 |
first_indexed |
2021-04-27T09:19:44Z |
---|---|
last_indexed |
2023-01-11T14:35:56Z |
id |
cronfa56613 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-10-25T13:58:50.7793803</datestamp><bib-version>v2</bib-version><id>56613</id><entry>2021-04-01</entry><title>Dilatonic states near holographic phase transitions</title><swanseaauthors><author><sid>3ce295f2c7cc318bac7da18f9989d8c3</sid><ORCID>0000-0002-2251-0111</ORCID><firstname>Maurizio</firstname><surname>Piai</surname><name>Maurizio Piai</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a455f6e7908ee14413cb31e9f6f2f0fb</sid><firstname>John</firstname><surname>Roughley</surname><name>John Roughley</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-04-01</date><deptcode>BGPS</deptcode><abstract>The spectrum of bound states of special strongly coupled confining field theories might include a parametrically light dilaton, associated with the formation of enhanced condensates that break (approximate) scale invariance spontaneously. It has been suggested in the literature that such a state may arise in connection with the theory being close to the unitarity bound in holographic models. We extend these ideas to cases where the background geometry is non-AdS, and the gravity description of the dual confining field theory has a top-down origin in supergravity.We exemplify this programme by studying the circle compactification of Romans six-dimensional half-maximal supergravity. We uncover a rich space of solutions, many of which were previously unknown in the literature. We compute the bosonic spectrum of excitations, and identify a tachyonic instability in a region of parameter space for a class of regular background solutions. A tachyon only exists along an energetically disfavoured (unphysical) branch of solutions of the gravity theory; we find evidence of a first-order phase transition that separates this region of parameter space from the physical one. Along the physical branch of regular solutions, one of the lightest scalar particles is approximately a dilaton, and it is associated with a condensate in the underlying theory. Yet, because of the location of the phase transition, its mass is not parametrically small, and it is, coincidentally, the next-to-lightest scalar bound state, rather than the lightest one.</abstract><type>Journal Article</type><journal>Physical Review D</journal><volume>103</volume><journalNumber>10</journalNumber><paginationStart/><paginationEnd/><publisher>American Physical Society (APS)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2470-0010</issnPrint><issnElectronic>2470-0029</issnElectronic><keywords/><publishedDay>18</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-05-18</publishedDate><doi>10.1103/physrevd.103.106018</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-10-25T13:58:50.7793803</lastEdited><Created>2021-04-01T12:50:33.9460580</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Daniel</firstname><surname>Elander</surname><order>1</order></author><author><firstname>Maurizio</firstname><surname>Piai</surname><orcid>0000-0002-2251-0111</orcid><order>2</order></author><author><firstname>John</firstname><surname>Roughley</surname><order>3</order></author></authors><documents><document><filename>56613__19929__1d5fcad7624a47d5af4f8265bfc4921a.pdf</filename><originalFilename>PhysRevD.103.106018.pdf</originalFilename><uploaded>2021-05-18T16:23:30.5028296</uploaded><type>Output</type><contentLength>5028936</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Released under the terms of the Creative Commons Attribution 4.0 International license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-10-25T13:58:50.7793803 v2 56613 2021-04-01 Dilatonic states near holographic phase transitions 3ce295f2c7cc318bac7da18f9989d8c3 0000-0002-2251-0111 Maurizio Piai Maurizio Piai true false a455f6e7908ee14413cb31e9f6f2f0fb John Roughley John Roughley true false 2021-04-01 BGPS The spectrum of bound states of special strongly coupled confining field theories might include a parametrically light dilaton, associated with the formation of enhanced condensates that break (approximate) scale invariance spontaneously. It has been suggested in the literature that such a state may arise in connection with the theory being close to the unitarity bound in holographic models. We extend these ideas to cases where the background geometry is non-AdS, and the gravity description of the dual confining field theory has a top-down origin in supergravity.We exemplify this programme by studying the circle compactification of Romans six-dimensional half-maximal supergravity. We uncover a rich space of solutions, many of which were previously unknown in the literature. We compute the bosonic spectrum of excitations, and identify a tachyonic instability in a region of parameter space for a class of regular background solutions. A tachyon only exists along an energetically disfavoured (unphysical) branch of solutions of the gravity theory; we find evidence of a first-order phase transition that separates this region of parameter space from the physical one. Along the physical branch of regular solutions, one of the lightest scalar particles is approximately a dilaton, and it is associated with a condensate in the underlying theory. Yet, because of the location of the phase transition, its mass is not parametrically small, and it is, coincidentally, the next-to-lightest scalar bound state, rather than the lightest one. Journal Article Physical Review D 103 10 American Physical Society (APS) 2470-0010 2470-0029 18 5 2021 2021-05-18 10.1103/physrevd.103.106018 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University 2022-10-25T13:58:50.7793803 2021-04-01T12:50:33.9460580 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Daniel Elander 1 Maurizio Piai 0000-0002-2251-0111 2 John Roughley 3 56613__19929__1d5fcad7624a47d5af4f8265bfc4921a.pdf PhysRevD.103.106018.pdf 2021-05-18T16:23:30.5028296 Output 5028936 application/pdf Version of Record true Released under the terms of the Creative Commons Attribution 4.0 International license true eng https://creativecommons.org/licenses/by/4.0/ |
title |
Dilatonic states near holographic phase transitions |
spellingShingle |
Dilatonic states near holographic phase transitions Maurizio Piai John Roughley |
title_short |
Dilatonic states near holographic phase transitions |
title_full |
Dilatonic states near holographic phase transitions |
title_fullStr |
Dilatonic states near holographic phase transitions |
title_full_unstemmed |
Dilatonic states near holographic phase transitions |
title_sort |
Dilatonic states near holographic phase transitions |
author_id_str_mv |
3ce295f2c7cc318bac7da18f9989d8c3 a455f6e7908ee14413cb31e9f6f2f0fb |
author_id_fullname_str_mv |
3ce295f2c7cc318bac7da18f9989d8c3_***_Maurizio Piai a455f6e7908ee14413cb31e9f6f2f0fb_***_John Roughley |
author |
Maurizio Piai John Roughley |
author2 |
Daniel Elander Maurizio Piai John Roughley |
format |
Journal article |
container_title |
Physical Review D |
container_volume |
103 |
container_issue |
10 |
publishDate |
2021 |
institution |
Swansea University |
issn |
2470-0010 2470-0029 |
doi_str_mv |
10.1103/physrevd.103.106018 |
publisher |
American Physical Society (APS) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
document_store_str |
1 |
active_str |
0 |
description |
The spectrum of bound states of special strongly coupled confining field theories might include a parametrically light dilaton, associated with the formation of enhanced condensates that break (approximate) scale invariance spontaneously. It has been suggested in the literature that such a state may arise in connection with the theory being close to the unitarity bound in holographic models. We extend these ideas to cases where the background geometry is non-AdS, and the gravity description of the dual confining field theory has a top-down origin in supergravity.We exemplify this programme by studying the circle compactification of Romans six-dimensional half-maximal supergravity. We uncover a rich space of solutions, many of which were previously unknown in the literature. We compute the bosonic spectrum of excitations, and identify a tachyonic instability in a region of parameter space for a class of regular background solutions. A tachyon only exists along an energetically disfavoured (unphysical) branch of solutions of the gravity theory; we find evidence of a first-order phase transition that separates this region of parameter space from the physical one. Along the physical branch of regular solutions, one of the lightest scalar particles is approximately a dilaton, and it is associated with a condensate in the underlying theory. Yet, because of the location of the phase transition, its mass is not parametrically small, and it is, coincidentally, the next-to-lightest scalar bound state, rather than the lightest one. |
published_date |
2021-05-18T08:00:53Z |
_version_ |
1821391667820756992 |
score |
11.364387 |