Journal article 577 views 36 downloads

An external validation of the QCovid risk prediction algorithm for risk of mortality from COVID-19 in adults: a national validation cohort study in England

Vahé Nafilyan, Ben Humberstone, Nisha Mehta, Ian Diamond, Carol Coupland, Luke Lorenzi, Piotr Pawelek, Ryan Schofield, Jasper Morgan, Paul Brown, Ronan Lyons Orcid Logo, Aziz Sheikh, Julia Hippisley-Cox

The Lancet Digital Health, Volume: 3, Issue: 7, Pages: e425 - e433

Swansea University Author: Ronan Lyons Orcid Logo

  • 56397.VOR.pdf

    PDF | Version of Record

    Distributed under the terms of a Creative Commons CC-BY-NC-ND License.

    Download (1.24MB)

Abstract

Public policy measures and clinical risk assessments relevant to COVID-19 need to be aided by risk prediction models that are rigorously developed and validated. We aimed to externally validate a risk prediction algorithm (QCovid) to estimate mortality outcomes from COVID-19 in adults in England.

Published in: The Lancet Digital Health
ISSN: 2589-7500
Published: Elsevier BV 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa56397
first_indexed 2021-03-11T09:16:19Z
last_indexed 2023-01-11T14:35:35Z
id cronfa56397
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-08-15T12:50:38.8204357</datestamp><bib-version>v2</bib-version><id>56397</id><entry>2021-03-11</entry><title>An external validation of the QCovid risk prediction algorithm for risk of mortality from COVID-19 in adults: a national validation cohort study in England</title><swanseaauthors><author><sid>83efcf2a9dfcf8b55586999d3d152ac6</sid><ORCID>0000-0001-5225-000X</ORCID><firstname>Ronan</firstname><surname>Lyons</surname><name>Ronan Lyons</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-03-11</date><deptcode>MEDS</deptcode><abstract>Public policy measures and clinical risk assessments relevant to COVID-19 need to be aided by risk prediction models that are rigorously developed and validated. We aimed to externally validate a risk prediction algorithm (QCovid) to estimate mortality outcomes from COVID-19 in adults in England.</abstract><type>Journal Article</type><journal>The Lancet Digital Health</journal><volume>3</volume><journalNumber>7</journalNumber><paginationStart>e425</paginationStart><paginationEnd>e433</paginationEnd><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2589-7500</issnPrint><issnElectronic/><keywords/><publishedDay>1</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-07-01</publishedDate><doi>10.1016/s2589-7500(21)00080-7</doi><url/><notes/><college>COLLEGE NANME</college><department>Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDS</DepartmentCode><institution>Swansea University</institution><apcterm>Other</apcterm><funders>Funding: UK National Institute for Health Research.</funders><projectreference/><lastEdited>2022-08-15T12:50:38.8204357</lastEdited><Created>2021-03-11T09:10:10.3853928</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Medicine</level></path><authors><author><firstname>Vah&#xE9;</firstname><surname>Nafilyan</surname><order>1</order></author><author><firstname>Ben</firstname><surname>Humberstone</surname><order>2</order></author><author><firstname>Nisha</firstname><surname>Mehta</surname><order>3</order></author><author><firstname>Ian</firstname><surname>Diamond</surname><order>4</order></author><author><firstname>Carol</firstname><surname>Coupland</surname><order>5</order></author><author><firstname>Luke</firstname><surname>Lorenzi</surname><order>6</order></author><author><firstname>Piotr</firstname><surname>Pawelek</surname><order>7</order></author><author><firstname>Ryan</firstname><surname>Schofield</surname><order>8</order></author><author><firstname>Jasper</firstname><surname>Morgan</surname><order>9</order></author><author><firstname>Paul</firstname><surname>Brown</surname><order>10</order></author><author><firstname>Ronan</firstname><surname>Lyons</surname><orcid>0000-0001-5225-000X</orcid><order>11</order></author><author><firstname>Aziz</firstname><surname>Sheikh</surname><order>12</order></author><author><firstname>Julia</firstname><surname>Hippisley-Cox</surname><order>13</order></author></authors><documents><document><filename>56397__24918__b6ce998c12f94f199e3faad7ab5fb914.pdf</filename><originalFilename>56397.VOR.pdf</originalFilename><uploaded>2022-08-15T12:48:16.1992138</uploaded><type>Output</type><contentLength>1295657</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Distributed under the terms of a Creative Commons CC-BY-NC-ND License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-08-15T12:50:38.8204357 v2 56397 2021-03-11 An external validation of the QCovid risk prediction algorithm for risk of mortality from COVID-19 in adults: a national validation cohort study in England 83efcf2a9dfcf8b55586999d3d152ac6 0000-0001-5225-000X Ronan Lyons Ronan Lyons true false 2021-03-11 MEDS Public policy measures and clinical risk assessments relevant to COVID-19 need to be aided by risk prediction models that are rigorously developed and validated. We aimed to externally validate a risk prediction algorithm (QCovid) to estimate mortality outcomes from COVID-19 in adults in England. Journal Article The Lancet Digital Health 3 7 e425 e433 Elsevier BV 2589-7500 1 7 2021 2021-07-01 10.1016/s2589-7500(21)00080-7 COLLEGE NANME Medical School COLLEGE CODE MEDS Swansea University Other Funding: UK National Institute for Health Research. 2022-08-15T12:50:38.8204357 2021-03-11T09:10:10.3853928 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Medicine Vahé Nafilyan 1 Ben Humberstone 2 Nisha Mehta 3 Ian Diamond 4 Carol Coupland 5 Luke Lorenzi 6 Piotr Pawelek 7 Ryan Schofield 8 Jasper Morgan 9 Paul Brown 10 Ronan Lyons 0000-0001-5225-000X 11 Aziz Sheikh 12 Julia Hippisley-Cox 13 56397__24918__b6ce998c12f94f199e3faad7ab5fb914.pdf 56397.VOR.pdf 2022-08-15T12:48:16.1992138 Output 1295657 application/pdf Version of Record true Distributed under the terms of a Creative Commons CC-BY-NC-ND License. true eng https://creativecommons.org/licenses/by-nc-nd/4.0/
title An external validation of the QCovid risk prediction algorithm for risk of mortality from COVID-19 in adults: a national validation cohort study in England
spellingShingle An external validation of the QCovid risk prediction algorithm for risk of mortality from COVID-19 in adults: a national validation cohort study in England
Ronan Lyons
title_short An external validation of the QCovid risk prediction algorithm for risk of mortality from COVID-19 in adults: a national validation cohort study in England
title_full An external validation of the QCovid risk prediction algorithm for risk of mortality from COVID-19 in adults: a national validation cohort study in England
title_fullStr An external validation of the QCovid risk prediction algorithm for risk of mortality from COVID-19 in adults: a national validation cohort study in England
title_full_unstemmed An external validation of the QCovid risk prediction algorithm for risk of mortality from COVID-19 in adults: a national validation cohort study in England
title_sort An external validation of the QCovid risk prediction algorithm for risk of mortality from COVID-19 in adults: a national validation cohort study in England
author_id_str_mv 83efcf2a9dfcf8b55586999d3d152ac6
author_id_fullname_str_mv 83efcf2a9dfcf8b55586999d3d152ac6_***_Ronan Lyons
author Ronan Lyons
author2 Vahé Nafilyan
Ben Humberstone
Nisha Mehta
Ian Diamond
Carol Coupland
Luke Lorenzi
Piotr Pawelek
Ryan Schofield
Jasper Morgan
Paul Brown
Ronan Lyons
Aziz Sheikh
Julia Hippisley-Cox
format Journal article
container_title The Lancet Digital Health
container_volume 3
container_issue 7
container_start_page e425
publishDate 2021
institution Swansea University
issn 2589-7500
doi_str_mv 10.1016/s2589-7500(21)00080-7
publisher Elsevier BV
college_str Faculty of Medicine, Health and Life Sciences
hierarchytype
hierarchy_top_id facultyofmedicinehealthandlifesciences
hierarchy_top_title Faculty of Medicine, Health and Life Sciences
hierarchy_parent_id facultyofmedicinehealthandlifesciences
hierarchy_parent_title Faculty of Medicine, Health and Life Sciences
department_str Swansea University Medical School - Medicine{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Medicine
document_store_str 1
active_str 0
description Public policy measures and clinical risk assessments relevant to COVID-19 need to be aided by risk prediction models that are rigorously developed and validated. We aimed to externally validate a risk prediction algorithm (QCovid) to estimate mortality outcomes from COVID-19 in adults in England.
published_date 2021-07-01T08:01:00Z
_version_ 1822207047153745920
score 11.048453