No Cover Image

Journal article 1059 views 206 downloads

Determination of the photon spectrum of a therapeutic linear accelerator near the maze entrance: Comparison of Monte Carlo modeling and measurements using scintillation detectors corrected for pulse pile‐up

Mohammad Qutub, Richard Hugtenburg Orcid Logo, Ihsan Al-affan

Medical Physics, Volume: 47, Issue: 9, Pages: 4522 - 4530

Swansea University Authors: Mohammad Qutub, Richard Hugtenburg Orcid Logo, Ihsan Al-affan

  • 55881.pdf

    PDF | Version of Record

    © 2020 The Authors. This is an open access article under the terms of the Creative Commons Attribution License

    Download (2.08MB)

Check full text

DOI (Published version): 10.1002/mp.14304

Abstract

AbstractPurposeThe determination of x‐ray spectra near the maze entrance of linear accelerator (LINAC) rooms is challenging due to the pulsed nature of the LINAC source. Mathematical methods to account for pulse pile‐up have been examined. These methods utilize the highly periodic pulsing structure...

Full description

Published in: Medical Physics
ISSN: 0094-2405 2473-4209
Published: Wiley 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa55881
Abstract: AbstractPurposeThe determination of x‐ray spectra near the maze entrance of linear accelerator (LINAC) rooms is challenging due to the pulsed nature of the LINAC source. Mathematical methods to account for pulse pile‐up have been examined. These methods utilize the highly periodic pulsing structure of the LINAC, differing from the effects of high‐intensity radioactive sources.MethodsSodium iodide (NaI) and plastic scintillation detectors were used to determine the energy spectra at different points near the maze entrance of a medical LINAC. Monte Carlo calculations of the energy distribution of scattered photons were used to simulate the energy spectrum at the maze entrance. The proposed algorithm uses the Monte Carlo code, FLUKA, to calculate a response function for both detectors. To determine the effects of the pile‐up in the spectra, the Poisson distribution was used, employing the average number of photons per pulse (μ) interacting with the detector. The quantity, μ, was obtained from the ratio of the number of events detected to the number of pulses delivered.The energy spectra at various distances from the maze entrance were measured using NaI and plastic scintillation detectors. From these measurements, the values of µ were calculated, and the pile‐up probability was determined. The FLUKA Monte Carlo code was used to calculate the spectrum at the maze entrance and the response matrices of the NaI and plastic scintillation detectors. The algorithm based on the Poisson distribution was applied to calculate the spectrum.ResultsThe agreement between the calculated and measured spectra was within the first standard deviation of the variance expected in µ. This agreement confirms that photons at the maze entrance have energies between 30 and 240 keV for a maze with three turns, with an average energy of around 85 keV. After pile‐up correction, the range of the pulse height distribution with the plastic scintillation detector, which has a low atomic number, was decreased (0 to 140 keV). In contrast, the range of the pulse height distribution with the NaI scintillation detector was closer to the photon spectrum (0 to 240 keV).ConclusionsThe corrected spectrum demonstrates that using a FLUKA Monte Carlo code and an algorithm based on the Poisson distribution are effective methods in removing the distortion due to the pile‐up in LINAC spectra when measuring with NaI and plastic scintillation detectors. The agreement between the corrected and measured spectra indicates that Monte Carlo modeling can accurately determine the spectrum of a LINAC machine at the maze entrance.
Keywords: pile‐up effect; radiation protection; radiotherapy maze entrance spectrum
College: Faculty of Medicine, Health and Life Sciences
Issue: 9
Start Page: 4522
End Page: 4530