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Purpose: The determination of x-ray spectra near the maze entrance of linear accelerator (LINAC)
rooms is challenging due to the pulsed nature of the LINAC source. Mathematical methods to
account for pulse pile-up have been examined. These methods utilize the highly periodic pulsing
structure of the LINAC, differing from the effects of high-intensity radioactive sources.

Methods: Sodium iodide (Nal) and plastic scintillation detectors were used to determine the energy
spectra at different points near the maze entrance of a medical LINAC. Monte Carlo calculations of
the energy distribution of scattered photons were used to simulate the energy spectrum at the maze
entrance. The proposed algorithm uses the Monte Carlo code, FLUKA, to calculate a response func-
tion for both detectors. To determine the effects of the pile-up in the spectra, the Poisson distribution
was used, employing the average number of photons per pulse (1) interacting with the detector. The
quantity, i, was obtained from the ratio of the number of events detected to the number of pulses
delivered.

The energy spectra at various distances from the maze entrance were measured using Nal and plas-
tic scintillation detectors. From these measurements, the values of pu were calculated, and the pile-up
probability was determined. The FLUKA Monte Carlo code was used to calculate the spectrum at
the maze entrance and the response matrices of the Nal and plastic scintillation detectors. The algo-
rithm based on the Poisson distribution was applied to calculate the spectrum.

Results: The agreement between the calculated and measured spectra was within the first standard
deviation of the variance expected in p. This agreement confirms that photons at the maze entrance
have energies between 30 and 240 keV for a maze with three turns, with an average energy of around
85 keV. After pile-up correction, the range of the pulse height distribution with the plastic scintilla-
tion detector, which has a low atomic number, was decreased (0 to 140 keV). In contrast, the range
of the pulse height distribution with the Nal scintillation detector was closer to the photon spectrum
(0 to 240 keV).

Conclusions: The corrected spectrum demonstrates that using a FLUKA Monte Carlo code and an
algorithm based on the Poisson distribution are effective methods in removing the distortion due to
the pile-up in LINAC spectra when measuring with Nal and plastic scintillation detectors. The agree-
ment between the corrected and measured spectra indicates that Monte Carlo modeling can accu-
rately determine the spectrum of a LINAC machine at the maze entrance. © 2020 The Authors.
Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists
in Medicine. [https://doi.org/10.1002/mp.14304]
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1. INTRODUCTION studies have determined the energy spectrum outside LINAC
rooms. Measurements of LINAC spectra with scintillation

The determination of the dose near the maze entrance of lin- detectors have been carried out by multiple centers.” > Fur-

ear accelerator (LINAC) rooms is a crucial aspect of radiation
protection in modern radiotherapy departments.’ The photon
energy spectrum and radiation components at this location
are required to achieve good dosimetric precision,” but few
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thermore, a measurement® of the photon energy spectrum at
the maze entrance was taken with a hyper-pure germanium
detector (HPGe) for a 6 MV LINAC beam with a field size
of 2 x 2 cm®. In this latter case, the spectrum taken at a

© 2020 The Authors. Medical Physics published by Wiley Periodicals
LLC on behalf of American Association of Physicists in Medicine.
This is an open access article under the terms of the Creative
Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly
cited.
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maze entrance with two turns ranged from a few keV up to
450 keV, with an average energy of about 150 keV. The spec-
tral components include photons that scatter from the phan-
tom and the concrete walls, with leakage from the LINAC
scattering through the maze, as well as the photons that pene-
trate the maze walls.

Several studies disagree with this finding. These studies,
using Monte Carlo calculations of energy spectra at the maze
entrance, have suggested that the average energy for a maze
with two turns is about 100 keV, ranging from 30 to
300 keV.”'° The Monte Carlo techniques used for these sim-
ulations had photon energies ranging from 0.5 to 30 MeV.
The shape of the spectra was shown to be somewhat indepen-
dent of the energy of the primary beam due to the Compton
process, which leads to large changes in the energy of scat-
tered photons. The difference between the measurements and
calculations may be due to the contribution of leakage pho-
tons, which are difficult to implement in the calculation.
However, differences may also be introduced due to the
pulsed nature of a LINAC beam. The pulse duration is in the
range of 4—10 ps, and the pulse repetition frequencies are in
the range of 100—1000 Hz, which can lead to a form of pulse
pile-up.'' '

The pulse structure of the LINAC can lead to two or more
photons being detected at the same time and recorded as a
single event with a high energy bin, similar to a pulse pile-
up. This significant phenomenon occurs at high counting
rates for many radiation detectors.'>'>'® With pile-up, the
total energy of an event is recorded at a higher energy bin and
is equal to the sum of energies of coincident individual pho-
tons that consequently distort the energy spectrum shape.
Different approaches have been proposed in the literature to
overcome the pile-up deformation of the energy spectrum.
These include using a hardware amplifier system, fast asyn-
chronous digitization, the application of real-time or live-time
counting digital pile-up correction, free-loss counting,
genetic algorithms, and artificial neural-network techniques.
However, as a result of pile-up rejection, information on the
energy distribution using these methods would be lost."” " In
the case of the LINAC pulse structure, all the energy is
deposited in the detector; therefore, if the number of events is
known, it is potentially possible to correct for the effect of the
pile-up.

In this study, a novel algorithm based on the Poisson dis-
tribution is suggested; one that analyzes and corrects for the
pile-up effects on the energy spectrum in scintillation detec-
tors. A Monte Carlo code, FLUKA, was employed to calcu-
late the scattered photon spectrum at the maze entrance but
does not consider the contribution of photons from leakage.
The FLUKA code was used to create a response matrix for
each detector and to calculate the spectra of photons emerg-
ing from the maze. The photon fluence is converted to a
pulse-height spectrum according to the detectors’ materials
and dimensions. The measurements were conducted with
sodium iodide (Nal) and plastic scintillation detectors for a 6
MV LINAC room at Singleton Hospital in Swansea, UK.
The Nal Scintillation Detector (Type: 905-3, 2- x 2-in.
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crystal, 2-in. tube) has a high atomic number that makes the
photoelectric absorption a relatively important process and
subsequently has a high intrinsic detection efficiency.”” The
plastic scintillator (Type: 51 B 51/ 2M -P EJ-200, Serial:
SFP284, ORTEC SCIONIX HOLLAND, hydrogen and car-
bon) is a tissue-equivalent detector that has a low atomic
number of constituents and thus very low photoelectric inter-
action probabilities.'® Tt is assumed that the total energy
recorded in the detectors is conserved, that is, there would be
no loss in energy and events.

The Poisson distribution is used in this algorithm to deter-
mine the effects of the pile-up in the spectra by utilizing the
average number of photons per pulse (it). The quantity p is
obtained from the ratio between the total number of events
detected and the number of pulses generated by the LINAC
during a particular time, whereas, the number of events
detected close to the LINAC is almost the same as the num-
ber of pulses. This method takes into account the relationship
between the distances from the maze entrance and the num-
ber of incoming photons. Therefore, as the position of the
detectors is moved nearer to the entrance, the number of
incoming photons would be higher, and subsequently, the
pile-up effect would be increased.

2. MATERIALS AND METHODS

2.A. Calibration of Nal and plastic scintillation
detectors

The Nal scintillation detector was calibrated using spec-
troscopic-grade radioactive sources. The energy spectrum for
the sources had either single or multiple photopeaks. Full-en-
ergy peaks of a plastic scintillation detector spectrum were
not observed in a typical pulse-height spectrum; the peaks
that appeared with the plastic scintillator detector were
related to the Compton back-scattering energy (E;gp) of the
radioactive source energies (E). The following relationship
calculated the E;gq:

1
Eiso _E<1 _1—|—2E>’ )]

mec?

where m, is the mass of the electron, and c is the speed of
light.

A linear equation was fitted in both cases to represent the
channel calibration against energy in the detector.

2.B. Measurements

Nal and plastic scintillation detectors placed at the height
of 1 m above the floor were used to obtain energy spectra at
the maze entrance. The signals from the scintillation detec-
tors were read out using an ORTEC digiBASE supplied with
MAESTRO multichannel analyzer (MCA) emulation soft-
ware. A radiotherapy room at the Singleton Hospital in
Swansea was used for the measurements, and the energy
spectrum of the background was recorded. The LINAC beam
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was incident on a phantom made from SolidWater material,
which is tissue equivalent, the dimensions of which were
0.3 x 0.3 x 0.3 m>. The LINAC machine (Elekta) delivered
a 6 MV photon beam of 1000 MU and a dose rate of
419 MU/min. The source to surface distance (SSD) was 1 m
from the phantom and oriented at a gantry angle of 270°, that
is, facing the corridor. The average energy spectrum was mea-
sured three times.

The output files from the MCA software were processed
and imported into MATLAB (version R2016a MathWorks)
for subsequent processing of the spectra. The spectra were
divided by the real time of the acquisition to obtain the spec-
tra in counts per second, and the background energy spec-
trum was subtracted from the output files of the energy
spectra. The field size of the LINAC machine was
0.3 x 0.3 m? The measurements of the energy spectra were
taken at different distances beyond the maze entrance laser
curtain, as shown in Fig. 1. The Nal and plastic scintillation
detectors were placed at 0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1, 1.5,
2,2.5,3,35,4,45,5,6,7,8,9,10, and 10.5 m.

2.C. FLUKA Monte Carlo simulation

The FLUKA Monte Carlo code was installed on a Linux
Ubuntu operating system with an Intel COREi7 desktop com-
puter to conduct the simulations. Initially, the validation from
the FLUKA code was achieved by comparing the calculated
percentage depth dose (PDD) with that of the hospital for 6
MYV, as shown in Fig. 2. The FLUKA calculated PDD was
carried out by simulating a 0.4 x 0.4 x 0.4 m’ water phan-
tom that consisted of 0.002 x 0.01 x 0.0 m® water
dosimeters irradiated by a conical photon beam. The dosime-
ters were rectangular sheets set at varying depths along the
central axis, and the SSD of the beam source was 1 m.

The simulation of the room and maze was carried out
using NCRP?' concrete walls of density 2340 kg.m *, which
is similar to the density and content of the concrete used for
the radiotherapy room. The geometry of the bunker room
with its maze entrance is illustrated in Fig. 3. The source was
a conical beam of photon positioned at 1 m distance from the
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Fic. 2. Normalized percentage depth dose (PDD) using the FLUKA code
and the measurement at the Singleton Hospital for 2 MeV (=26 MV). —a—
represents the FLUKA Monte Carlo code calculation, --a- represents the Sin-
gleton Hospital measurement and a represents the percentage difference (%
Diff.) between the measured and the simulated PDD.

surface of the water phantom, which had a volume of
0.4 x 04 x 0.4 m>. The simulated photon beam had a
radius of 0.0565 m at the phantom surface, which is equiva-
lent to a field size of 0.1 x 0.1 m” Rayleigh scattering was
taken into account in the simulation. The energy cutoff for
photons was set to 10 keV, and the kinetic energy cutoff for
electrons was set to 100 keV. The fluence spectrum of back-
scattered photons was scored in an air sheet that was posi-
tioned at the maze entrance. The simulated detector was
1.87 m in width, 0.01 m in depth, and 2 m in height. The
USRTRACK code was used to obtain the photon fluence dis-
tribution (Sg) through the detector as a function of energy. A
summary of the FLUKA simulation is presented in Table I,
as suggested by the AAPM Research Committee Task Group
268 (2018).%%

2.D. Poisson distribution convolution

The Poisson distribution is a probability analysis func-
tion that describes random discrete events in a specific
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FiG. 1. The energy spectrum per second at distances outside the maze entrance. — represents the spectrum at the laser curtain, — - represents the spectrum at
0.4 m, represents the spectrum at 1 m, represents the spectrum at 2 m, - - - represents the spectrum at 5 m, and -+ represents the spectrum at 10 m. (a)

Using a Nal scintillation detector and (b) using a plastic scintillation detector. The measurements were repeated three times, and the uncertainty was within 2%.

[Color figure can be viewed at wileyonlinelibrary.com]
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Fic. 3. The Monte Carlo simulation of the radiotherapy room at the Singleton Hospital, Swansea.

time or space interval.>> This distribution, based on the
mean number of successes (i), is a positive value. A con-
volution (conv) between two integral functions (S; and S,)
was used to determine the energy distribution associated
with the absorption of multiple numbers of photons in the
detectors.

Complete saturation of the detector counts was
observed at the highest count rates, that is, every LINAC
pulse resulted in a photon being detected. For this vary-
ing distance method, the ratio of counts between the
spectra determined at the farthest distance,x, from the
maze entrance with lowest counts (e.g., at 10.5, 10, 9) to
the number of LINAC pulses delivered in the same per-
iod should be equal to

2

| can, therefore, be calculated to give the pile-up probability
of the photon counts (Py, P;, Ps,. . ...P,) for the energy spectra
at low count rates. This method of calculation of p is unsuc-
cessful as the ratio in Eq. (2) approaches 1 if it is assumed
that the spectra of low and high count rates are almost the
same. p has a direct relation to the total energy that is
absorbed by the detector and can be obtained by the area
under the spectrum curve. The relationship of p and the ener-
gies was plotted. A curve was fitted at the low count rates,
where its equation was used to predict the u at high count
rates.

counts, /pyises = 1 — pois(0, ).

2.E. Response matrices

The response matrices of the 2" x 2" Nal and plastic
scintillation detectors were calculated using the FLUKA
code. The simulated detector was a cylinder with a
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radius of 0.0254 m and a height of 0.0508 m in the
beam direction. The thickness of the aluminum covering
the detector was 0.000812 m, with a 0.002997 m air gap.
To irradiate the whole detector, the photon beam entered
the front face of the detectors with a 0.05842 x
0.05842 m? field size. The material used for the plastic
detector was PLASCINT, which had a density of
1032 kg.m > and an elemental composition by weight of
hydrogen 8.5% and carbon 91.5%. The range of energies
was from 10 to 600 keV in 10 keV intervals. The result
of each energy could be obtained as spectra or data from
a DETECT card that enabled the energy deposition to be
recorded on an event by event basis.”* A MATLAB code
was used to import data for all 60 energies and to com-
bine them into a 60 x 60 matrix for each detector, called
the response matrix (Ry).

The function Sg was taken from the FLUKA USRTRACK
output for the maze entrance detector. The spectrum for each
detector was used to determine S, which was calculated by
multiplying Sg by the response matrix (Ry;) of the particular
detector using the Eq. (3):

S1 =Sg x Rm 3)

The convolution function was then used to get Sy, Ss, .. ..
S, where n was dependent on the pile-up probability of the
detectors’ spectra. In the MATLAB program, the convolution
code was “conv(u,v),” which in this research will be:

SQ = COHV(S[,S])
S3 = COHV(SQ, S])
S4 = conv(Ss,Sy) &)

S, = conv(S,-1,S1)
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TaBLE I. Checklist of parameters suggested by the AAPM Research Com-
mittee Task Group 268 (2018).

Checklist
item Item name Description references References
23 Code, Version  fluka2011.2x-linux- https://www.fluka.
gfor64bitAA. tar.gz org
4,17 Validation Depth dose explained in ~ Al-Affan et al.
the methods (2015)*
5 Timing 25-68 h
8 Source Simulated
description monoenergetic photons
with energies (0.5~
30) MeV
9 Cross-sections  Built into the FLUKA
code
10 Transport Photons with energy
parameters cutoff 10 keV, electrons’
kinetic energy with
cutoff 100 keV.
11 VRT and/or NA
AEIT
12 Scored Photon energy and
quantities photon fluence
13,18 Historical/ Primary photons 10’
statistical Better than 10%
uncertainties
14 Statistical The FLUKA code was
methods run for five cycles to
determine any statistical
fluctuation in the results.
15,16 Postprocessing MATLAB (R2016a,

MathWorks)

The final function of the spectrum with pile-up was
obtained from Spc (Poisson convolution) in Eq. (5):

Spe — (Jﬁ x pois(l,p))

+ (Sm:ﬁ X pois(2, p))

i (surjﬁ X pois(3, u)) ...

Sh .
+ (sum(Sn) x pois(n, ) ®)

Spc was determined as a function of photon fluence plotted
against the energy interval. This function was normalized to
the total energy (Tg) from the measurement spectra that rep-
resented the area under the energy curve. The equation of the
area under the energy curve can be given as the following:

b
b
Tg = / f(E)dE = ZCountS_at_each_bin x AE.  (6)
a

a

3. RESULTS

The relationship between the total recorded counts per sec-
ond of the photon spectra and the distance from the maze
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entrance that were obtained by the Nal and plastic scintilla-
tion detectors is shown in Fig. 4. Figure 5 shows the relation-
ship between the total energy per second, for each spectrum,
and the distance from the maze entrance.

The value of p can be calculated using Eq. (2), which is equal
to the ratio between the low counts rate spectrum (e.g., at 10.5,
10, 9 m) to the total number of pulses. A plot of the total energy
spectrum vs [ is extrapolated along a straight line to obtain an
estimate of p at high counts, as illustrated in Fig. 6. The proce-
dure assumes that the photon spectrum is not changing.

Based on Fig. 6, the relationship between the p and the
energy at certain distances for the Nal scintillation detectors is:

lna = 2.969 x 107> x Total Energyy,; — 0.177 (7)

and for plastic scintillation detectors is:
Hplasic = 8-066 X 10> x Total Energy j,gic — 0.349  (8)

The p is then calculated by Eqgs. (7) and (8) from the linear
parts of the Nal and plastic detectors’ curves. From p, the
pile-up probability of the photon counts for the energy spec-
trum at measured points using the Nal and plastic detectors
can be determined.

The fluence spectrum at the maze entrance calculated with
the FLUKA code is shown in Fig. 7. The FLUKA energy
spectrum Sg is multiplied by the detector response matrix
(Ry) to get Sy, followed by S,, S, ...., and S,. Hence, the
spectrum with pile-up Spc can be obtained by the convolution
of Egs. (3), (4), and (5).

The calculated spectrum Spc and the measured spectrum
at certain distances were normalized to the total energy of the
measured spectrum using Eq. (6). Figures 8 and 9 show a
comparison between the measured and the calculated spectra
for Nal and plastic scintillation detectors, respectively, at vari-
ous distances. The calculated spectra include the response
matrices and pile-up effects.
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Fic. 4. The relationship between the total counts per second recorded by the
detectors and the distance outside the maze entrance. -4 - represents the Nal
scintillation detector and -e - represents the plastic scintillation detector. The
measurements have been repeated three times, and the uncertainty is
within 2%. [Color figure can be viewed at wileyonlinelibrary.com]
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x1073 by using Eq. (6). Figure 10 represents the comparison
40 r between the calculated spectra, including the response
matrix and pile-up effects, and the measured spectra for
30 | the Nal scintillation detector. Figure 11 represents the
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Fi. 7. The fluence spectrum at the maze entrance of the radiotherapy room
using a FLUKA simulation. The detector was a sheet of air 2 m high, 1.87 m
wide, and 0.01 m deep.

The same method and the same value of p in Egs. (7)
and (8) are also used to calculate the spectra with different
field sizes of the LINAC compared with the measured
spectra. The measured spectra were taken at 0.1 m from
the maze entrance using the Nal and plastic detectors.
Then, the calculated and the measured spectra for different
field sizes were normalized to the measured total energy
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comparison between the calculated spectra, including the
response matrix and pile-up effects, and the measured
spectra for the plastic scintillation detector.

For the Nal scintillation detector, the comparison of the
measured spectrum with the calculated spectrum, including
the response matrices and pile-up effects, showed an
agreement within 7% at 10.5 m, 3% at 2 m, 1% at the
laser curtain of the maze entrance, 6% for a 3 x 3 cm’
field size, 4.8% for a 10 x 10 cm? field size, and 2% for
a 30 x 30 cm® field size. For the plastic scintillation
detector, the comparison of the measured spectrum with
the calculated spectrum showed an agreement within 13%
at 10.5 m, 7% at 2 m, 4% at the laser curtain of the maze
entrance, 10% for a 3 x 3 cm? field size, 6.8% for a
10 x 10 cm® field size, and 4% for a 30 x 30 cm” field
size.

The normalized counts of the corrected photon energy
distributions using the Nal and plastic scintillation detec-
tors are shown in Fig. 12. This figure represents the
pulse height distributions without pile-up at the maze
entrance while also comparing the FLUKA calculation
distribution.
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FiG. 9. Calculated and measured pulse height distributions using the plastic scintillation detector. (a) at the most distant point (10.5 m) from the maze entrance,
(b) at 2 m from the maze entrance and (c) at the laser curtain of the maze entrance. — — represents the calculated spectrum and — represents the measured spec-

trum. [Color figure can be viewed at wileyonlinelibrary.com]
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Fi. 10. The pulse height distributions calculated and measured at 10 cm away from the maze entrance using the Nal scintillation detector. (a): for 3 x 3 cm?®
field size, (b) for 10 x 10 cm? field size, and (c) for 30 x 30 cm? field size. — — represents the calculated spectrum and — represents the measured spectrum.

[Color figure can be viewed at wileyonlinelibrary.com]

4. DISCUSSION

The FLUKA Monte Carlo code and an algorithm based
on the Poisson distribution were successfully developed to
predict an accurate spectrum at the maze entrance of a radio-
therapy room. Validation of the FLUKA code has shown that
the PDD (Fig. 2) agreed with the measurement to within 3%.
The FLUKA code was used to simulate the spectrum at the
maze entrance of the radiotherapy room. The code was also
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used to calculate the response matrices for the Nal and plastic
scintillation detectors.

In both detectors, the measurements at high count rates,
which were taken close to the maze entrance, showed satura-
tion. The total count number (Fig. 4), however, shows that all
LINAC pulses are recorded and lie within the range of the
detectors, whereas, the total energies of the spectrum increased
almost exponentially as the count rate increased, as shown in
Fig. 5. The saturation effect on the Nal scintillation detector
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[Color figure can be viewed at wileyonlinelibrary.com]

1 -:‘
v \
3 0.8 "
c
3 [
(8]
o 06 -|'
Q
-‘_!‘u |
0.4
E
(=]
2
0.2
/
o | /
0

100 200
Energy (keV)

FiG. 12. Pulse height distribution corrected for pile-up at the maze entrance
using the Nal and plastic scintillation detectors and compared with FLUKA
calculation distribution. — represents the FLUKA calculation distribution,
— - represents the distributions corrected for pile-up using the Nal scintilla-
tion detector and — — represents the distributions corrected for pile-up using
the plastic scintillation detector.

was observed at a distance of <5 m, while on the plastic scintil-
lation detector, the effect started at a distance of <2 m. The
degree of the stability of the total counts number and the
increasing of total energies at high count rates indicated that
multiple pulses are being recorded as a single event. The pile-
up probability and its effect of the photon energy spectra in the
occupational area can be obtained from the p value.

The total counts per second reached a saturation point in
the detectors, as shown in Fig. 4 when the pulse rate was
about 400 Hz. This count rate reflects the number of LINAC
pulses per second which has recently been measured by
Velthuis et al."* In this study, they used a diamond detector
irradiated by the Elekta LINAC machine that was also used
in this experiment.

The novel algorithm presented here used a method to esti-
mate the p of the Poisson distribution, the simulation of
response matrices of the detectors, and simulation of the
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spectrum at the maze entrance of the radiotherapy room to
compare calculated and measured spectra. The agreement
between the measured and calculated spectra confirms the
importance of the use of the simulation of the spectrum at the
maze entrance; the response matrices of the detectors have
been calculated to predict the pulse height distribution of the
scintillation detectors without a pile-up effect.

The energy range of the fluence determined by the Monte
Carlo code was between 30 keV and 240 keV, with an aver-
age energy around 85 keV. The range of the pulse height dis-
tribution with the Nal scintillation detector was between 20
and 240 keV, with an average energy near 85 keV, the range
with the plastic scintillation detector, which has a low atomic
number, was from 0 up to 140 keV. These pulse height distri-
butions show that the Nal scintillation detector has the same
range of photon fluence due to its high atomic number and
resulting high intrinsic detection efficiency. However, even at
low count rates, some pile-up does influence the Nal detector.
In contrast, the escape of Compton scattered photons leads to
areduced energy range in the plastic scintillator.

5. CONCLUSIONS

This work shows that high photon count rates were
recorded as new events, migrated to higher energy bins, with
the conservation of the total photon energy. This phe-
nomenon is a form of pile-up that appears as a result of the
pulsed nature of the LINAC output. Agreement between the
calculated and measured spectrum using the Nal and plastic
scintillation detectors was always within the first standard
deviation of the variance expected in p, which is acceptable
in the field of radiation protection. Therefore, the measure-
ments of photon energy spectra confirm the current and pre-
vious estimates of LINAC energy spectra outside the maze.
This novel algorithm, which depends on a Monte Carlo simu-
lation with the FLUKA code and a correction for the pile-up
effect with the Poisson distribution, gives the real range of a
photon energy spectrum. The agreement indicates that Monte
Carlo modeling is a valuable tool in determining the spectrum
of photons at the maze entrance generated by a medical
LINAC.
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