Journal article 1008 views 225 downloads
Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance
Advanced Functional Materials, Volume: 30, Issue: 39, Start page: 2004563
Swansea University Authors: Harrison Lee, Matthew Davies , James Durrant , Wing Chung Tsoi
-
PDF | Accepted Manuscript
Download (1.65MB) -
PDF | Supplemental material
Download (2.45MB)
DOI (Published version): 10.1002/adfm.202004563
Abstract
Colloidal metal chalcogenide quantum dots (QDs) have excellent quantum efficiency in light–matter interactions and good device stability. However, QDs have been brought to the forefront as viable building blocks in bottom‐up assembling semiconductor devices, the development of QD solar cell (QDSC) i...
Published in: | Advanced Functional Materials |
---|---|
ISSN: | 1616-301X 1616-3028 |
Published: |
Wiley
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa54968 |
first_indexed |
2020-08-12T11:32:59Z |
---|---|
last_indexed |
2020-10-16T03:08:28Z |
id |
cronfa54968 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-10-15T15:54:30.9923760</datestamp><bib-version>v2</bib-version><id>54968</id><entry>2020-08-12</entry><title>Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance</title><swanseaauthors><author><sid>0ef65494d0dda7f6aea5ead8bb6ce466</sid><ORCID/><firstname>Harrison</firstname><surname>Lee</surname><name>Harrison Lee</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4ad478e342120ca3434657eb13527636</sid><ORCID>0000-0003-2595-5121</ORCID><firstname>Matthew</firstname><surname>Davies</surname><name>Matthew Davies</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>f3dd64bc260e5c07adfa916c27dbd58a</sid><ORCID>0000-0001-8353-7345</ORCID><firstname>James</firstname><surname>Durrant</surname><name>James Durrant</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7e5f541df6635a9a8e1a579ff2de5d56</sid><ORCID>0000-0003-3836-5139</ORCID><firstname>Wing Chung</firstname><surname>Tsoi</surname><name>Wing Chung Tsoi</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-08-12</date><deptcode>EAAS</deptcode><abstract>Colloidal metal chalcogenide quantum dots (QDs) have excellent quantum efficiency in light–matter interactions and good device stability. However, QDs have been brought to the forefront as viable building blocks in bottom‐up assembling semiconductor devices, the development of QD solar cell (QDSC) is still confronting considerable challenges compared to other QD technologies due to their low performance under natural sunlight, as a consequence of untapped potential from their quantized density‐of‐state and inorganic natures. This report is designed to address this long‐standing challenge by accessing the feasibility of using QDSC for indoor and concentration PV (CPV) applications. This work finds that above bandgap photon energy irradiation of QD solids can generate high densities of excitons via multi‐photon absorption (MPA), and these excitons are not limited to diffuse by Auger recombination up to 1.5 × 1019 cm−3 densities. Based on these findings, a 19.5% (2000 lux indoor light) and an 11.6% efficiency (1.5 Suns) have been facilely realized from ordinary QDSCs (9.55% under 1 Sun). To further illustrate the potential of the MPA in QDSCs, 21.29% efficiency polymer lens CPVs (4.08 Suns) and viable sensor networks powered by indoor QDSCs matrix have been demonstrated.</abstract><type>Journal Article</type><journal>Advanced Functional Materials</journal><volume>30</volume><journalNumber>39</journalNumber><paginationStart>2004563</paginationStart><publisher>Wiley</publisher><issnPrint>1616-301X</issnPrint><issnElectronic>1616-3028</issnElectronic><keywords/><publishedDay>25</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-09-25</publishedDate><doi>10.1002/adfm.202004563</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-10-15T15:54:30.9923760</lastEdited><Created>2020-08-12T12:31:10.3371148</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Bo</firstname><surname>Hou</surname><order>1</order></author><author><firstname>Byung‐Sung</firstname><surname>Kim</surname><order>2</order></author><author><firstname>Harrison</firstname><surname>Lee</surname><orcid/><order>3</order></author><author><firstname>Yuljae</firstname><surname>Cho</surname><order>4</order></author><author><firstname>Paul</firstname><surname>Giraud</surname><order>5</order></author><author><firstname>Mengxia</firstname><surname>Liu</surname><order>6</order></author><author><firstname>Jingchao</firstname><surname>Zhang</surname><order>7</order></author><author><firstname>Matthew</firstname><surname>Davies</surname><orcid>0000-0003-2595-5121</orcid><order>8</order></author><author><firstname>James</firstname><surname>Durrant</surname><orcid>0000-0001-8353-7345</orcid><order>9</order></author><author><firstname>Wing Chung</firstname><surname>Tsoi</surname><orcid>0000-0003-3836-5139</orcid><order>10</order></author><author><firstname>Zhe</firstname><surname>Li</surname><order>11</order></author><author><firstname>Stoichko D.</firstname><surname>Dimitrov</surname><order>12</order></author><author><firstname>Jung Inn</firstname><surname>Sohn</surname><order>13</order></author><author><firstname>SeungNam</firstname><surname>Cha</surname><order>14</order></author><author><firstname>Jong Min</firstname><surname>Kim</surname><order>15</order></author></authors><documents><document><filename>54968__17894__e8d6fac3c0e6433fa3b586121bbca8ba.pdf</filename><originalFilename>54968.pdf</originalFilename><uploaded>2020-08-12T12:32:46.0179004</uploaded><type>Output</type><contentLength>1730841</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-08-11T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>English</language></document><document><filename>54968__17895__d546aa97186e47f3bbb803f3469bb32c.pdf</filename><originalFilename>54968SI.pdf</originalFilename><uploaded>2020-08-12T12:35:13.3698605</uploaded><type>Output</type><contentLength>2568336</contentLength><contentType>application/pdf</contentType><version>Supplemental material</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-08-11T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-10-15T15:54:30.9923760 v2 54968 2020-08-12 Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance 0ef65494d0dda7f6aea5ead8bb6ce466 Harrison Lee Harrison Lee true false 4ad478e342120ca3434657eb13527636 0000-0003-2595-5121 Matthew Davies Matthew Davies true false f3dd64bc260e5c07adfa916c27dbd58a 0000-0001-8353-7345 James Durrant James Durrant true false 7e5f541df6635a9a8e1a579ff2de5d56 0000-0003-3836-5139 Wing Chung Tsoi Wing Chung Tsoi true false 2020-08-12 EAAS Colloidal metal chalcogenide quantum dots (QDs) have excellent quantum efficiency in light–matter interactions and good device stability. However, QDs have been brought to the forefront as viable building blocks in bottom‐up assembling semiconductor devices, the development of QD solar cell (QDSC) is still confronting considerable challenges compared to other QD technologies due to their low performance under natural sunlight, as a consequence of untapped potential from their quantized density‐of‐state and inorganic natures. This report is designed to address this long‐standing challenge by accessing the feasibility of using QDSC for indoor and concentration PV (CPV) applications. This work finds that above bandgap photon energy irradiation of QD solids can generate high densities of excitons via multi‐photon absorption (MPA), and these excitons are not limited to diffuse by Auger recombination up to 1.5 × 1019 cm−3 densities. Based on these findings, a 19.5% (2000 lux indoor light) and an 11.6% efficiency (1.5 Suns) have been facilely realized from ordinary QDSCs (9.55% under 1 Sun). To further illustrate the potential of the MPA in QDSCs, 21.29% efficiency polymer lens CPVs (4.08 Suns) and viable sensor networks powered by indoor QDSCs matrix have been demonstrated. Journal Article Advanced Functional Materials 30 39 2004563 Wiley 1616-301X 1616-3028 25 9 2020 2020-09-25 10.1002/adfm.202004563 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2020-10-15T15:54:30.9923760 2020-08-12T12:31:10.3371148 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Bo Hou 1 Byung‐Sung Kim 2 Harrison Lee 3 Yuljae Cho 4 Paul Giraud 5 Mengxia Liu 6 Jingchao Zhang 7 Matthew Davies 0000-0003-2595-5121 8 James Durrant 0000-0001-8353-7345 9 Wing Chung Tsoi 0000-0003-3836-5139 10 Zhe Li 11 Stoichko D. Dimitrov 12 Jung Inn Sohn 13 SeungNam Cha 14 Jong Min Kim 15 54968__17894__e8d6fac3c0e6433fa3b586121bbca8ba.pdf 54968.pdf 2020-08-12T12:32:46.0179004 Output 1730841 application/pdf Accepted Manuscript true 2021-08-11T00:00:00.0000000 true English 54968__17895__d546aa97186e47f3bbb803f3469bb32c.pdf 54968SI.pdf 2020-08-12T12:35:13.3698605 Output 2568336 application/pdf Supplemental material true 2021-08-11T00:00:00.0000000 true eng |
title |
Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance |
spellingShingle |
Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance Harrison Lee Matthew Davies James Durrant Wing Chung Tsoi |
title_short |
Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance |
title_full |
Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance |
title_fullStr |
Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance |
title_full_unstemmed |
Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance |
title_sort |
Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance |
author_id_str_mv |
0ef65494d0dda7f6aea5ead8bb6ce466 4ad478e342120ca3434657eb13527636 f3dd64bc260e5c07adfa916c27dbd58a 7e5f541df6635a9a8e1a579ff2de5d56 |
author_id_fullname_str_mv |
0ef65494d0dda7f6aea5ead8bb6ce466_***_Harrison Lee 4ad478e342120ca3434657eb13527636_***_Matthew Davies f3dd64bc260e5c07adfa916c27dbd58a_***_James Durrant 7e5f541df6635a9a8e1a579ff2de5d56_***_Wing Chung Tsoi |
author |
Harrison Lee Matthew Davies James Durrant Wing Chung Tsoi |
author2 |
Bo Hou Byung‐Sung Kim Harrison Lee Yuljae Cho Paul Giraud Mengxia Liu Jingchao Zhang Matthew Davies James Durrant Wing Chung Tsoi Zhe Li Stoichko D. Dimitrov Jung Inn Sohn SeungNam Cha Jong Min Kim |
format |
Journal article |
container_title |
Advanced Functional Materials |
container_volume |
30 |
container_issue |
39 |
container_start_page |
2004563 |
publishDate |
2020 |
institution |
Swansea University |
issn |
1616-301X 1616-3028 |
doi_str_mv |
10.1002/adfm.202004563 |
publisher |
Wiley |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Colloidal metal chalcogenide quantum dots (QDs) have excellent quantum efficiency in light–matter interactions and good device stability. However, QDs have been brought to the forefront as viable building blocks in bottom‐up assembling semiconductor devices, the development of QD solar cell (QDSC) is still confronting considerable challenges compared to other QD technologies due to their low performance under natural sunlight, as a consequence of untapped potential from their quantized density‐of‐state and inorganic natures. This report is designed to address this long‐standing challenge by accessing the feasibility of using QDSC for indoor and concentration PV (CPV) applications. This work finds that above bandgap photon energy irradiation of QD solids can generate high densities of excitons via multi‐photon absorption (MPA), and these excitons are not limited to diffuse by Auger recombination up to 1.5 × 1019 cm−3 densities. Based on these findings, a 19.5% (2000 lux indoor light) and an 11.6% efficiency (1.5 Suns) have been facilely realized from ordinary QDSCs (9.55% under 1 Sun). To further illustrate the potential of the MPA in QDSCs, 21.29% efficiency polymer lens CPVs (4.08 Suns) and viable sensor networks powered by indoor QDSCs matrix have been demonstrated. |
published_date |
2020-09-25T07:56:11Z |
_version_ |
1821391371993350144 |
score |
11.047501 |