No Cover Image

Journal article 835 views 185 downloads

Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance

Bo Hou, Byung‐Sung Kim, Harrison Lee, Yuljae Cho, Paul Giraud, Mengxia Liu, Jingchao Zhang, Matthew Davies Orcid Logo, James Durrant Orcid Logo, Wing Chung Tsoi Orcid Logo, Zhe Li, Stoichko D. Dimitrov, Jung Inn Sohn, SeungNam Cha, Jong Min Kim

Advanced Functional Materials, Volume: 30, Issue: 39, Start page: 2004563

Swansea University Authors: Harrison Lee, Matthew Davies Orcid Logo, James Durrant Orcid Logo, Wing Chung Tsoi Orcid Logo

Check full text

DOI (Published version): 10.1002/adfm.202004563

Abstract

Colloidal metal chalcogenide quantum dots (QDs) have excellent quantum efficiency in light–matter interactions and good device stability. However, QDs have been brought to the forefront as viable building blocks in bottom‐up assembling semiconductor devices, the development of QD solar cell (QDSC) i...

Full description

Published in: Advanced Functional Materials
ISSN: 1616-301X 1616-3028
Published: Wiley 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa54968
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2020-08-12T11:32:59Z
last_indexed 2020-10-16T03:08:28Z
id cronfa54968
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-10-15T15:54:30.9923760</datestamp><bib-version>v2</bib-version><id>54968</id><entry>2020-08-12</entry><title>Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance</title><swanseaauthors><author><sid>0ef65494d0dda7f6aea5ead8bb6ce466</sid><ORCID/><firstname>Harrison</firstname><surname>Lee</surname><name>Harrison Lee</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4ad478e342120ca3434657eb13527636</sid><ORCID>0000-0003-2595-5121</ORCID><firstname>Matthew</firstname><surname>Davies</surname><name>Matthew Davies</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>f3dd64bc260e5c07adfa916c27dbd58a</sid><ORCID>0000-0001-8353-7345</ORCID><firstname>James</firstname><surname>Durrant</surname><name>James Durrant</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7e5f541df6635a9a8e1a579ff2de5d56</sid><ORCID>0000-0003-3836-5139</ORCID><firstname>Wing Chung</firstname><surname>Tsoi</surname><name>Wing Chung Tsoi</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-08-12</date><deptcode>MTLS</deptcode><abstract>Colloidal metal chalcogenide quantum dots (QDs) have excellent quantum efficiency in light&#x2013;matter interactions and good device stability. However, QDs have been brought to the forefront as viable building blocks in bottom&#x2010;up assembling semiconductor devices, the development of QD solar cell (QDSC) is still confronting considerable challenges compared to other QD technologies due to their low performance under natural sunlight, as a consequence of untapped potential from their quantized density&#x2010;of&#x2010;state and inorganic natures. This report is designed to address this long&#x2010;standing challenge by accessing the feasibility of using QDSC for indoor and concentration PV (CPV) applications. This work finds that above bandgap photon energy irradiation of QD solids can generate high densities of excitons via multi&#x2010;photon absorption (MPA), and these excitons are not limited to diffuse by Auger recombination up to 1.5 &#xD7; 1019 cm&#x2212;3 densities. Based on these findings, a 19.5% (2000 lux indoor light) and an 11.6% efficiency (1.5 Suns) have been facilely realized from ordinary QDSCs (9.55% under 1 Sun). To further illustrate the potential of the MPA in QDSCs, 21.29% efficiency polymer lens CPVs (4.08 Suns) and viable sensor networks powered by indoor QDSCs matrix have been demonstrated.</abstract><type>Journal Article</type><journal>Advanced Functional Materials</journal><volume>30</volume><journalNumber>39</journalNumber><paginationStart>2004563</paginationStart><publisher>Wiley</publisher><issnPrint>1616-301X</issnPrint><issnElectronic>1616-3028</issnElectronic><keywords/><publishedDay>25</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-09-25</publishedDate><doi>10.1002/adfm.202004563</doi><url/><notes/><college>COLLEGE NANME</college><department>Materials Science and Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MTLS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-10-15T15:54:30.9923760</lastEdited><Created>2020-08-12T12:31:10.3371148</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Bo</firstname><surname>Hou</surname><order>1</order></author><author><firstname>Byung&#x2010;Sung</firstname><surname>Kim</surname><order>2</order></author><author><firstname>Harrison</firstname><surname>Lee</surname><orcid/><order>3</order></author><author><firstname>Yuljae</firstname><surname>Cho</surname><order>4</order></author><author><firstname>Paul</firstname><surname>Giraud</surname><order>5</order></author><author><firstname>Mengxia</firstname><surname>Liu</surname><order>6</order></author><author><firstname>Jingchao</firstname><surname>Zhang</surname><order>7</order></author><author><firstname>Matthew</firstname><surname>Davies</surname><orcid>0000-0003-2595-5121</orcid><order>8</order></author><author><firstname>James</firstname><surname>Durrant</surname><orcid>0000-0001-8353-7345</orcid><order>9</order></author><author><firstname>Wing Chung</firstname><surname>Tsoi</surname><orcid>0000-0003-3836-5139</orcid><order>10</order></author><author><firstname>Zhe</firstname><surname>Li</surname><order>11</order></author><author><firstname>Stoichko D.</firstname><surname>Dimitrov</surname><order>12</order></author><author><firstname>Jung Inn</firstname><surname>Sohn</surname><order>13</order></author><author><firstname>SeungNam</firstname><surname>Cha</surname><order>14</order></author><author><firstname>Jong Min</firstname><surname>Kim</surname><order>15</order></author></authors><documents><document><filename>54968__17894__e8d6fac3c0e6433fa3b586121bbca8ba.pdf</filename><originalFilename>54968.pdf</originalFilename><uploaded>2020-08-12T12:32:46.0179004</uploaded><type>Output</type><contentLength>1730841</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-08-11T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>English</language></document><document><filename>54968__17895__d546aa97186e47f3bbb803f3469bb32c.pdf</filename><originalFilename>54968SI.pdf</originalFilename><uploaded>2020-08-12T12:35:13.3698605</uploaded><type>Output</type><contentLength>2568336</contentLength><contentType>application/pdf</contentType><version>Supplemental material</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-08-11T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2020-10-15T15:54:30.9923760 v2 54968 2020-08-12 Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance 0ef65494d0dda7f6aea5ead8bb6ce466 Harrison Lee Harrison Lee true false 4ad478e342120ca3434657eb13527636 0000-0003-2595-5121 Matthew Davies Matthew Davies true false f3dd64bc260e5c07adfa916c27dbd58a 0000-0001-8353-7345 James Durrant James Durrant true false 7e5f541df6635a9a8e1a579ff2de5d56 0000-0003-3836-5139 Wing Chung Tsoi Wing Chung Tsoi true false 2020-08-12 MTLS Colloidal metal chalcogenide quantum dots (QDs) have excellent quantum efficiency in light–matter interactions and good device stability. However, QDs have been brought to the forefront as viable building blocks in bottom‐up assembling semiconductor devices, the development of QD solar cell (QDSC) is still confronting considerable challenges compared to other QD technologies due to their low performance under natural sunlight, as a consequence of untapped potential from their quantized density‐of‐state and inorganic natures. This report is designed to address this long‐standing challenge by accessing the feasibility of using QDSC for indoor and concentration PV (CPV) applications. This work finds that above bandgap photon energy irradiation of QD solids can generate high densities of excitons via multi‐photon absorption (MPA), and these excitons are not limited to diffuse by Auger recombination up to 1.5 × 1019 cm−3 densities. Based on these findings, a 19.5% (2000 lux indoor light) and an 11.6% efficiency (1.5 Suns) have been facilely realized from ordinary QDSCs (9.55% under 1 Sun). To further illustrate the potential of the MPA in QDSCs, 21.29% efficiency polymer lens CPVs (4.08 Suns) and viable sensor networks powered by indoor QDSCs matrix have been demonstrated. Journal Article Advanced Functional Materials 30 39 2004563 Wiley 1616-301X 1616-3028 25 9 2020 2020-09-25 10.1002/adfm.202004563 COLLEGE NANME Materials Science and Engineering COLLEGE CODE MTLS Swansea University 2020-10-15T15:54:30.9923760 2020-08-12T12:31:10.3371148 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Bo Hou 1 Byung‐Sung Kim 2 Harrison Lee 3 Yuljae Cho 4 Paul Giraud 5 Mengxia Liu 6 Jingchao Zhang 7 Matthew Davies 0000-0003-2595-5121 8 James Durrant 0000-0001-8353-7345 9 Wing Chung Tsoi 0000-0003-3836-5139 10 Zhe Li 11 Stoichko D. Dimitrov 12 Jung Inn Sohn 13 SeungNam Cha 14 Jong Min Kim 15 54968__17894__e8d6fac3c0e6433fa3b586121bbca8ba.pdf 54968.pdf 2020-08-12T12:32:46.0179004 Output 1730841 application/pdf Accepted Manuscript true 2021-08-11T00:00:00.0000000 true English 54968__17895__d546aa97186e47f3bbb803f3469bb32c.pdf 54968SI.pdf 2020-08-12T12:35:13.3698605 Output 2568336 application/pdf Supplemental material true 2021-08-11T00:00:00.0000000 true eng
title Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance
spellingShingle Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance
Harrison Lee
Matthew Davies
James Durrant
Wing Chung Tsoi
title_short Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance
title_full Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance
title_fullStr Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance
title_full_unstemmed Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance
title_sort Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance
author_id_str_mv 0ef65494d0dda7f6aea5ead8bb6ce466
4ad478e342120ca3434657eb13527636
f3dd64bc260e5c07adfa916c27dbd58a
7e5f541df6635a9a8e1a579ff2de5d56
author_id_fullname_str_mv 0ef65494d0dda7f6aea5ead8bb6ce466_***_Harrison Lee
4ad478e342120ca3434657eb13527636_***_Matthew Davies
f3dd64bc260e5c07adfa916c27dbd58a_***_James Durrant
7e5f541df6635a9a8e1a579ff2de5d56_***_Wing Chung Tsoi
author Harrison Lee
Matthew Davies
James Durrant
Wing Chung Tsoi
author2 Bo Hou
Byung‐Sung Kim
Harrison Lee
Yuljae Cho
Paul Giraud
Mengxia Liu
Jingchao Zhang
Matthew Davies
James Durrant
Wing Chung Tsoi
Zhe Li
Stoichko D. Dimitrov
Jung Inn Sohn
SeungNam Cha
Jong Min Kim
format Journal article
container_title Advanced Functional Materials
container_volume 30
container_issue 39
container_start_page 2004563
publishDate 2020
institution Swansea University
issn 1616-301X
1616-3028
doi_str_mv 10.1002/adfm.202004563
publisher Wiley
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering
document_store_str 1
active_str 0
description Colloidal metal chalcogenide quantum dots (QDs) have excellent quantum efficiency in light–matter interactions and good device stability. However, QDs have been brought to the forefront as viable building blocks in bottom‐up assembling semiconductor devices, the development of QD solar cell (QDSC) is still confronting considerable challenges compared to other QD technologies due to their low performance under natural sunlight, as a consequence of untapped potential from their quantized density‐of‐state and inorganic natures. This report is designed to address this long‐standing challenge by accessing the feasibility of using QDSC for indoor and concentration PV (CPV) applications. This work finds that above bandgap photon energy irradiation of QD solids can generate high densities of excitons via multi‐photon absorption (MPA), and these excitons are not limited to diffuse by Auger recombination up to 1.5 × 1019 cm−3 densities. Based on these findings, a 19.5% (2000 lux indoor light) and an 11.6% efficiency (1.5 Suns) have been facilely realized from ordinary QDSCs (9.55% under 1 Sun). To further illustrate the potential of the MPA in QDSCs, 21.29% efficiency polymer lens CPVs (4.08 Suns) and viable sensor networks powered by indoor QDSCs matrix have been demonstrated.
published_date 2020-09-25T04:08:51Z
_version_ 1763753623981916160
score 11.013619