No Cover Image

Journal article 694 views 171 downloads

Channel Mobility and Contact Resistance in Scaled ZnO Thin-Film Transistors

Alnazer Mohamed, N.A. B. Ghazali, H.M. H. Chong, Richard Cobley Orcid Logo, Lijie Li Orcid Logo, Karol Kalna Orcid Logo

Solid-State Electronics, Volume: 172, Start page: 107867

Swansea University Authors: Alnazer Mohamed, Richard Cobley Orcid Logo, Lijie Li Orcid Logo, Karol Kalna Orcid Logo

  • 1-s2.0-S0038110120300757-main.pdf

    PDF | Accepted Manuscript

    © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

    Download (2.87MB)

Abstract

ZnO thin-film transistors (TFTs) with scaled channel lengths of 10 m, 5 m, 4 m, and 2 m exhibit increasing intrinsic channel electron mobility at a gate bias of 10 V (15 V) from 0.782 cm/Vs (0.83 cm/Vs) in the 10 m channel length TFT to 8.9 cm/Vs (19.04 cm/Vs) for the channel length scaled down to 2...

Full description

Published in: Solid-State Electronics
ISSN: 0038-1101
Published: Elsevier BV 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa54909
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2020-08-07T16:42:45Z
last_indexed 2021-12-03T04:13:39Z
id cronfa54909
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-12-02T11:45:18.5418514</datestamp><bib-version>v2</bib-version><id>54909</id><entry>2020-08-07</entry><title>Channel Mobility and Contact Resistance in Scaled ZnO Thin-Film Transistors</title><swanseaauthors><author><sid>4a2ea026de0a8decbf007abdc3309751</sid><firstname>Alnazer</firstname><surname>Mohamed</surname><name>Alnazer Mohamed</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>2ce7e1dd9006164425415a35fa452494</sid><ORCID>0000-0003-4833-8492</ORCID><firstname>Richard</firstname><surname>Cobley</surname><name>Richard Cobley</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>ed2c658b77679a28e4c1dcf95af06bd6</sid><ORCID>0000-0003-4630-7692</ORCID><firstname>Lijie</firstname><surname>Li</surname><name>Lijie Li</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1329a42020e44fdd13de2f20d5143253</sid><ORCID>0000-0002-6333-9189</ORCID><firstname>Karol</firstname><surname>Kalna</surname><name>Karol Kalna</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-08-07</date><deptcode>FGSEN</deptcode><abstract>ZnO thin-film transistors (TFTs) with scaled channel lengths of 10 m, 5 m, 4 m, and 2 m exhibit increasing intrinsic channel electron mobility at a gate bias of 10 V (15 V) from 0.782 cm/Vs (0.83 cm/Vs) in the 10 m channel length TFT to 8.9 cm/Vs (19.04 cm/Vs) for the channel length scaled down to 2 m. Current-voltage measurements indicate an n-type channel enhancement mode transistor operation, with threshold voltages in the range of V to V, maximum drain currents of 41 A/m, 96 A/m, 193 A/m, and 214 A/m at a gate bias of 10 V, and breakdown voltages of 80 V, 70 V, 62 V, and 59 V with respect to channel lengths of 10 m, 5 m, 4 m, and 2 m. The channel electron mobility (excluding contact resistance) is extracted by the transmission line method (TLM) from the effective electron mobility (including contact resistance). The contact sheet resistance of /sq extracted from the measurements, which is larger than the contact sheet resistance of /sq obtained from the DFT calculation and the 1D self-consistent Poisson-Shr&#xF6;dinger simulation, largely limits the drive current in the scaled ZnO TFTs.</abstract><type>Journal Article</type><journal>Solid-State Electronics</journal><volume>172</volume><journalNumber/><paginationStart>107867</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0038-1101</issnPrint><issnElectronic/><keywords>Thin-Film Transistors, Transmission Line Method, Remote Plasma Atomic Layer Deposition, Density Functional Theory</keywords><publishedDay>1</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-10-01</publishedDate><doi>10.1016/j.sse.2020.107867</doi><url/><notes/><college>COLLEGE NANME</college><department>Science and Engineering - Faculty</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>FGSEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-12-02T11:45:18.5418514</lastEdited><Created>2020-08-07T17:40:05.5899426</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>Alnazer</firstname><surname>Mohamed</surname><order>1</order></author><author><firstname>N.A. B.</firstname><surname>Ghazali</surname><order>2</order></author><author><firstname>H.M. H.</firstname><surname>Chong</surname><order>3</order></author><author><firstname>Richard</firstname><surname>Cobley</surname><orcid>0000-0003-4833-8492</orcid><order>4</order></author><author><firstname>Lijie</firstname><surname>Li</surname><orcid>0000-0003-4630-7692</orcid><order>5</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid>0000-0002-6333-9189</orcid><order>6</order></author></authors><documents><document><filename>54909__17884__0d1357b3212c4b41b4df3b1616c7aaf4.pdf</filename><originalFilename>1-s2.0-S0038110120300757-main.pdf</originalFilename><uploaded>2020-08-07T17:41:40.1871148</uploaded><type>Output</type><contentLength>3007986</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-08-07T00:00:00.0000000</embargoDate><documentNotes>&#xA9; 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/</documentNotes><copyrightCorrect>true</copyrightCorrect><language>English</language></document></documents><OutputDurs/></rfc1807>
spelling 2021-12-02T11:45:18.5418514 v2 54909 2020-08-07 Channel Mobility and Contact Resistance in Scaled ZnO Thin-Film Transistors 4a2ea026de0a8decbf007abdc3309751 Alnazer Mohamed Alnazer Mohamed true false 2ce7e1dd9006164425415a35fa452494 0000-0003-4833-8492 Richard Cobley Richard Cobley true false ed2c658b77679a28e4c1dcf95af06bd6 0000-0003-4630-7692 Lijie Li Lijie Li true false 1329a42020e44fdd13de2f20d5143253 0000-0002-6333-9189 Karol Kalna Karol Kalna true false 2020-08-07 FGSEN ZnO thin-film transistors (TFTs) with scaled channel lengths of 10 m, 5 m, 4 m, and 2 m exhibit increasing intrinsic channel electron mobility at a gate bias of 10 V (15 V) from 0.782 cm/Vs (0.83 cm/Vs) in the 10 m channel length TFT to 8.9 cm/Vs (19.04 cm/Vs) for the channel length scaled down to 2 m. Current-voltage measurements indicate an n-type channel enhancement mode transistor operation, with threshold voltages in the range of V to V, maximum drain currents of 41 A/m, 96 A/m, 193 A/m, and 214 A/m at a gate bias of 10 V, and breakdown voltages of 80 V, 70 V, 62 V, and 59 V with respect to channel lengths of 10 m, 5 m, 4 m, and 2 m. The channel electron mobility (excluding contact resistance) is extracted by the transmission line method (TLM) from the effective electron mobility (including contact resistance). The contact sheet resistance of /sq extracted from the measurements, which is larger than the contact sheet resistance of /sq obtained from the DFT calculation and the 1D self-consistent Poisson-Shrödinger simulation, largely limits the drive current in the scaled ZnO TFTs. Journal Article Solid-State Electronics 172 107867 Elsevier BV 0038-1101 Thin-Film Transistors, Transmission Line Method, Remote Plasma Atomic Layer Deposition, Density Functional Theory 1 10 2020 2020-10-01 10.1016/j.sse.2020.107867 COLLEGE NANME Science and Engineering - Faculty COLLEGE CODE FGSEN Swansea University 2021-12-02T11:45:18.5418514 2020-08-07T17:40:05.5899426 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering Alnazer Mohamed 1 N.A. B. Ghazali 2 H.M. H. Chong 3 Richard Cobley 0000-0003-4833-8492 4 Lijie Li 0000-0003-4630-7692 5 Karol Kalna 0000-0002-6333-9189 6 54909__17884__0d1357b3212c4b41b4df3b1616c7aaf4.pdf 1-s2.0-S0038110120300757-main.pdf 2020-08-07T17:41:40.1871148 Output 3007986 application/pdf Accepted Manuscript true 2021-08-07T00:00:00.0000000 © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ true English
title Channel Mobility and Contact Resistance in Scaled ZnO Thin-Film Transistors
spellingShingle Channel Mobility and Contact Resistance in Scaled ZnO Thin-Film Transistors
Alnazer Mohamed
Richard Cobley
Lijie Li
Karol Kalna
title_short Channel Mobility and Contact Resistance in Scaled ZnO Thin-Film Transistors
title_full Channel Mobility and Contact Resistance in Scaled ZnO Thin-Film Transistors
title_fullStr Channel Mobility and Contact Resistance in Scaled ZnO Thin-Film Transistors
title_full_unstemmed Channel Mobility and Contact Resistance in Scaled ZnO Thin-Film Transistors
title_sort Channel Mobility and Contact Resistance in Scaled ZnO Thin-Film Transistors
author_id_str_mv 4a2ea026de0a8decbf007abdc3309751
2ce7e1dd9006164425415a35fa452494
ed2c658b77679a28e4c1dcf95af06bd6
1329a42020e44fdd13de2f20d5143253
author_id_fullname_str_mv 4a2ea026de0a8decbf007abdc3309751_***_Alnazer Mohamed
2ce7e1dd9006164425415a35fa452494_***_Richard Cobley
ed2c658b77679a28e4c1dcf95af06bd6_***_Lijie Li
1329a42020e44fdd13de2f20d5143253_***_Karol Kalna
author Alnazer Mohamed
Richard Cobley
Lijie Li
Karol Kalna
author2 Alnazer Mohamed
N.A. B. Ghazali
H.M. H. Chong
Richard Cobley
Lijie Li
Karol Kalna
format Journal article
container_title Solid-State Electronics
container_volume 172
container_start_page 107867
publishDate 2020
institution Swansea University
issn 0038-1101
doi_str_mv 10.1016/j.sse.2020.107867
publisher Elsevier BV
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering
document_store_str 1
active_str 0
description ZnO thin-film transistors (TFTs) with scaled channel lengths of 10 m, 5 m, 4 m, and 2 m exhibit increasing intrinsic channel electron mobility at a gate bias of 10 V (15 V) from 0.782 cm/Vs (0.83 cm/Vs) in the 10 m channel length TFT to 8.9 cm/Vs (19.04 cm/Vs) for the channel length scaled down to 2 m. Current-voltage measurements indicate an n-type channel enhancement mode transistor operation, with threshold voltages in the range of V to V, maximum drain currents of 41 A/m, 96 A/m, 193 A/m, and 214 A/m at a gate bias of 10 V, and breakdown voltages of 80 V, 70 V, 62 V, and 59 V with respect to channel lengths of 10 m, 5 m, 4 m, and 2 m. The channel electron mobility (excluding contact resistance) is extracted by the transmission line method (TLM) from the effective electron mobility (including contact resistance). The contact sheet resistance of /sq extracted from the measurements, which is larger than the contact sheet resistance of /sq obtained from the DFT calculation and the 1D self-consistent Poisson-Shrödinger simulation, largely limits the drive current in the scaled ZnO TFTs.
published_date 2020-10-01T04:08:45Z
_version_ 1763753617094868992
score 11.013171