No Cover Image

Journal article 567 views 102 downloads

A high-order FEM formulation for free and forced vibration analysis of a nonlocal nonlinear graded Timoshenko nanobeam based on the weak form quadrature element method

M. Trabelssi, S. El-Borgi, Michael Friswell

Archive of Applied Mechanics, Volume: 90, Issue: 10, Pages: 2133 - 2156

Swansea University Author: Michael Friswell

  • 54547.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution License (CC-BY).

    Download (636.78KB)

Abstract

The purpose of this paper is to provide a high-order finite element method (FEM) formulation of nonlocal nonlinear nonlocal graded Timoshenko based on the weak form quadrature element method (WQEM). This formulation offers the advantages and flexibility of the FEM without its limiting low-order accu...

Full description

Published in: Archive of Applied Mechanics
ISSN: 0939-1533 1432-0681
Published: Springer Science and Business Media LLC 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa54547
Abstract: The purpose of this paper is to provide a high-order finite element method (FEM) formulation of nonlocal nonlinear nonlocal graded Timoshenko based on the weak form quadrature element method (WQEM). This formulation offers the advantages and flexibility of the FEM without its limiting low-order accuracy. The nanobeam theory accounts for the von Kármán geometric nonlinearity in addition to Eringen’s nonlocal constitutive models. For the sake of generality, a nonlinear foundation is included in the formulation. The proposed formulation generates high-order derivative terms that cannot be accounted for using regular first- or second-order interpolation functions. Hamilton’s principle is used to derive the variational statement which is discretized using WQEM. The results of a WQEM free vibration study are assessed using data obtained from a similar problem solved by the differential quadrature method (DQM). The study shows that WQEM can offer the same accuracy as DQM with a reduced computational cost. Currently the literature describes a small number of high-order numerical forced vibration problems, the majority of which are limited to DQM. To obtain forced vibration solutions using WQEM, the authors propose two different methods to obtain frequency response curves. The obtained results indicate that the frequency response curves generated by either method closely match their DQM counterparts obtained from the literature, and this is despite the low mesh density used for the WQEM systems.
Keywords: Functionally graded nanobeam; Nonlocal theory; Weak form quadrature element method (WQEM); Free and forced vibration; Nonlinear von’Kármán strain; Frequency response curve
College: Faculty of Science and Engineering
Issue: 10
Start Page: 2133
End Page: 2156