No Cover Image

Journal article 664 views 256 downloads

Averaging principle for fractional heat equations driven by stochastic measures

Guangjun Shen, Jiang-lun Wu, Xiuwei Yin

Applied Mathematics Letters, Volume: 106, Start page: 106404

Swansea University Author: Jiang-lun Wu

  • ShenWuYin-AML-D-20-00213.pdf

    PDF | Accepted Manuscript

    Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).

    Download (260.84KB)

Abstract

In this paper, by utilising Besov space techniques, we establish the time averaging principle for a heat equation with fractional Laplace driven by a general stochastic measure $\mu$ which is assumed (only) to satisfy the $\sigma$-additivity in probability.

Published in: Applied Mathematics Letters
ISSN: 0893-9659
Published: Elsevier BV 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa53933
first_indexed 2020-04-11T19:56:17Z
last_indexed 2021-03-16T04:17:11Z
id cronfa53933
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-03-15T12:32:44.8290509</datestamp><bib-version>v2</bib-version><id>53933</id><entry>2020-04-11</entry><title>Averaging principle for fractional heat equations driven by stochastic measures</title><swanseaauthors><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-04-11</date><abstract>In this paper, by utilising Besov space techniques, we establish the time averaging principle for a heat equation with fractional Laplace driven by a general stochastic measure $\mu$ which is assumed (only) to satisfy the $\sigma$-additivity in probability.</abstract><type>Journal Article</type><journal>Applied Mathematics Letters</journal><volume>106</volume><journalNumber/><paginationStart>106404</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0893-9659</issnPrint><issnElectronic/><keywords>Averaging principle; fractional heat equation; stochastic measure; Besov space</keywords><publishedDay>1</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-08-01</publishedDate><doi>10.1016/j.aml.2020.106404</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-03-15T12:32:44.8290509</lastEdited><Created>2020-04-11T17:43:49.9001712</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Guangjun</firstname><surname>Shen</surname><order>1</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><order>2</order></author><author><firstname>Xiuwei</firstname><surname>Yin</surname><order>3</order></author></authors><documents><document><filename>53933__17047__e67eeb0fd5c54ee99bd25848cb776e1e.pdf</filename><originalFilename>ShenWuYin-AML-D-20-00213.pdf</originalFilename><uploaded>2020-04-11T18:04:20.3906880</uploaded><type>Output</type><contentLength>267101</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-04-18T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2021-03-15T12:32:44.8290509 v2 53933 2020-04-11 Averaging principle for fractional heat equations driven by stochastic measures dbd67e30d59b0f32592b15b5705af885 Jiang-lun Wu Jiang-lun Wu true false 2020-04-11 In this paper, by utilising Besov space techniques, we establish the time averaging principle for a heat equation with fractional Laplace driven by a general stochastic measure $\mu$ which is assumed (only) to satisfy the $\sigma$-additivity in probability. Journal Article Applied Mathematics Letters 106 106404 Elsevier BV 0893-9659 Averaging principle; fractional heat equation; stochastic measure; Besov space 1 8 2020 2020-08-01 10.1016/j.aml.2020.106404 COLLEGE NANME COLLEGE CODE Swansea University 2021-03-15T12:32:44.8290509 2020-04-11T17:43:49.9001712 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Guangjun Shen 1 Jiang-lun Wu 2 Xiuwei Yin 3 53933__17047__e67eeb0fd5c54ee99bd25848cb776e1e.pdf ShenWuYin-AML-D-20-00213.pdf 2020-04-11T18:04:20.3906880 Output 267101 application/pdf Accepted Manuscript true 2021-04-18T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true eng https://creativecommons.org/licenses/by-nc-nd/4.0/
title Averaging principle for fractional heat equations driven by stochastic measures
spellingShingle Averaging principle for fractional heat equations driven by stochastic measures
Jiang-lun Wu
title_short Averaging principle for fractional heat equations driven by stochastic measures
title_full Averaging principle for fractional heat equations driven by stochastic measures
title_fullStr Averaging principle for fractional heat equations driven by stochastic measures
title_full_unstemmed Averaging principle for fractional heat equations driven by stochastic measures
title_sort Averaging principle for fractional heat equations driven by stochastic measures
author_id_str_mv dbd67e30d59b0f32592b15b5705af885
author_id_fullname_str_mv dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu
author Jiang-lun Wu
author2 Guangjun Shen
Jiang-lun Wu
Xiuwei Yin
format Journal article
container_title Applied Mathematics Letters
container_volume 106
container_start_page 106404
publishDate 2020
institution Swansea University
issn 0893-9659
doi_str_mv 10.1016/j.aml.2020.106404
publisher Elsevier BV
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 1
active_str 0
description In this paper, by utilising Besov space techniques, we establish the time averaging principle for a heat equation with fractional Laplace driven by a general stochastic measure $\mu$ which is assumed (only) to satisfy the $\sigma$-additivity in probability.
published_date 2020-08-01T19:53:14Z
_version_ 1821345887533662208
score 11.04748