No Cover Image

Journal article 1011 views 214 downloads

Successes and Challenges Associated with Solution Processing of Kesterite Cu2ZnSnS4 Solar Cells on Titanium Substrates

Zhengfei Wei, Tom Dunlop Orcid Logo, Peter J. Heard, Cecile Charbonneau, David Worsley Orcid Logo, Trystan Watson Orcid Logo

ACS Applied Energy Materials, Volume: 3, Issue: 4, Pages: 3876 - 3883

Swansea University Authors: Zhengfei Wei, Tom Dunlop Orcid Logo, Cecile Charbonneau, David Worsley Orcid Logo, Trystan Watson Orcid Logo

Check full text

DOI (Published version): 10.1021/acsaem.0c00292

Abstract

Roll-to-roll (R2R) processing of solution-based Cu2ZnSn(S,Se)4 (CZT(S,Se)) solar cells on flexible metal foil is an attractive way to achieve cost-effective manufacturing of photovoltaics. In this work we report the first successful fabrication of solution-processed CZTS devices on a variety of tita...

Full description

Published in: ACS Applied Energy Materials
ISSN: 2574-0962 2574-0962
Published: American Chemical Society (ACS) 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa53824
first_indexed 2020-03-16T19:40:16Z
last_indexed 2020-08-14T03:26:47Z
id cronfa53824
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-08-13T09:52:19.3874680</datestamp><bib-version>v2</bib-version><id>53824</id><entry>2020-03-16</entry><title>Successes and Challenges Associated with Solution Processing of Kesterite Cu2ZnSnS4 Solar Cells on Titanium Substrates</title><swanseaauthors><author><sid>e4ae52ae9b63b7b6da834c460ee3bb2d</sid><ORCID/><firstname>Zhengfei</firstname><surname>Wei</surname><name>Zhengfei Wei</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>809395460ab1e6b53a906b136d919c41</sid><ORCID>0000-0002-5851-8713</ORCID><firstname>Tom</firstname><surname>Dunlop</surname><name>Tom Dunlop</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4dc059714847cb22ed922ab058950560</sid><firstname>Cecile</firstname><surname>Charbonneau</surname><name>Cecile Charbonneau</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c426b1c1b0123d7057c1b969083cea69</sid><ORCID>0000-0002-9956-6228</ORCID><firstname>David</firstname><surname>Worsley</surname><name>David Worsley</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-03-16</date><deptcode>EAAS</deptcode><abstract>Roll-to-roll (R2R) processing of solution-based Cu2ZnSn(S,Se)4 (CZT(S,Se)) solar cells on flexible metal foil is an attractive way to achieve cost-effective manufacturing of photovoltaics. In this work we report the first successful fabrication of solution-processed CZTS devices on a variety of titanium substrates with up to 2.88% power conversion efficiency (PCE) collected on flexible 75 &#x3BC;m Ti foil. A comparative study of device performance and properties is presented aiming to address key processing challenges. First, we show that a rapid transfer of heat through the titanium substrates is responsible for the accelerated crystallisation of kesterite films characterised with small grain size, a high density of grain boundaries and numerous pore sites near the Mo/CZTS interface which affect charge transport and enhance recombination in devices. Following this, we demonstrate the occurrence of metal ion diffusion induced by the high temperature treatment required for the sulfurization of the CZTS stack: Ti4+ ions are observed to migrate upwards to the Mo/CZTS interface whilst Cu1+ and Zn2+ ions diffuse through the Mo layer into the Ti substrate. Finally, residual stress data confirm the good adhesion of stacked materials throughout the sequential solution process. These findings are evidenced by combining electron imaging observations, elemental depth profiles generated by secondary ion mass spectrometry, and x-ray residual stress analysis of the Ti substrate.</abstract><type>Journal Article</type><journal>ACS Applied Energy Materials</journal><volume>3</volume><journalNumber>4</journalNumber><paginationStart>3876</paginationStart><paginationEnd>3883</paginationEnd><publisher>American Chemical Society (ACS)</publisher><issnPrint>2574-0962</issnPrint><issnElectronic>2574-0962</issnElectronic><keywords>CZTS; titanium; solar cell; stress; SIMS</keywords><publishedDay>27</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-04-27</publishedDate><doi>10.1021/acsaem.0c00292</doi><url>http://dx.doi.org/10.1021/acsaem.0c00292</url><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-08-13T09:52:19.3874680</lastEdited><Created>2020-03-16T17:01:49.4178155</Created><authors><author><firstname>Zhengfei</firstname><surname>Wei</surname><orcid/><order>1</order></author><author><firstname>Tom</firstname><surname>Dunlop</surname><orcid>0000-0002-5851-8713</orcid><order>2</order></author><author><firstname>Peter J.</firstname><surname>Heard</surname><order>3</order></author><author><firstname>Cecile</firstname><surname>Charbonneau</surname><order>4</order></author><author><firstname>David</firstname><surname>Worsley</surname><orcid>0000-0002-9956-6228</orcid><order>5</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>6</order></author></authors><documents><document><filename>53824__16922__a8bcd9c365194a7e9098eb67d23f8044.pdf</filename><originalFilename>53824.pdf</originalFilename><uploaded>2020-03-25T17:25:38.3555986</uploaded><type>Output</type><contentLength>930641</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-03-24T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2020-08-13T09:52:19.3874680 v2 53824 2020-03-16 Successes and Challenges Associated with Solution Processing of Kesterite Cu2ZnSnS4 Solar Cells on Titanium Substrates e4ae52ae9b63b7b6da834c460ee3bb2d Zhengfei Wei Zhengfei Wei true false 809395460ab1e6b53a906b136d919c41 0000-0002-5851-8713 Tom Dunlop Tom Dunlop true false 4dc059714847cb22ed922ab058950560 Cecile Charbonneau Cecile Charbonneau true false c426b1c1b0123d7057c1b969083cea69 0000-0002-9956-6228 David Worsley David Worsley true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 2020-03-16 EAAS Roll-to-roll (R2R) processing of solution-based Cu2ZnSn(S,Se)4 (CZT(S,Se)) solar cells on flexible metal foil is an attractive way to achieve cost-effective manufacturing of photovoltaics. In this work we report the first successful fabrication of solution-processed CZTS devices on a variety of titanium substrates with up to 2.88% power conversion efficiency (PCE) collected on flexible 75 μm Ti foil. A comparative study of device performance and properties is presented aiming to address key processing challenges. First, we show that a rapid transfer of heat through the titanium substrates is responsible for the accelerated crystallisation of kesterite films characterised with small grain size, a high density of grain boundaries and numerous pore sites near the Mo/CZTS interface which affect charge transport and enhance recombination in devices. Following this, we demonstrate the occurrence of metal ion diffusion induced by the high temperature treatment required for the sulfurization of the CZTS stack: Ti4+ ions are observed to migrate upwards to the Mo/CZTS interface whilst Cu1+ and Zn2+ ions diffuse through the Mo layer into the Ti substrate. Finally, residual stress data confirm the good adhesion of stacked materials throughout the sequential solution process. These findings are evidenced by combining electron imaging observations, elemental depth profiles generated by secondary ion mass spectrometry, and x-ray residual stress analysis of the Ti substrate. Journal Article ACS Applied Energy Materials 3 4 3876 3883 American Chemical Society (ACS) 2574-0962 2574-0962 CZTS; titanium; solar cell; stress; SIMS 27 4 2020 2020-04-27 10.1021/acsaem.0c00292 http://dx.doi.org/10.1021/acsaem.0c00292 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2020-08-13T09:52:19.3874680 2020-03-16T17:01:49.4178155 Zhengfei Wei 1 Tom Dunlop 0000-0002-5851-8713 2 Peter J. Heard 3 Cecile Charbonneau 4 David Worsley 0000-0002-9956-6228 5 Trystan Watson 0000-0002-8015-1436 6 53824__16922__a8bcd9c365194a7e9098eb67d23f8044.pdf 53824.pdf 2020-03-25T17:25:38.3555986 Output 930641 application/pdf Accepted Manuscript true 2021-03-24T00:00:00.0000000 true eng
title Successes and Challenges Associated with Solution Processing of Kesterite Cu2ZnSnS4 Solar Cells on Titanium Substrates
spellingShingle Successes and Challenges Associated with Solution Processing of Kesterite Cu2ZnSnS4 Solar Cells on Titanium Substrates
Zhengfei Wei
Tom Dunlop
Cecile Charbonneau
David Worsley
Trystan Watson
title_short Successes and Challenges Associated with Solution Processing of Kesterite Cu2ZnSnS4 Solar Cells on Titanium Substrates
title_full Successes and Challenges Associated with Solution Processing of Kesterite Cu2ZnSnS4 Solar Cells on Titanium Substrates
title_fullStr Successes and Challenges Associated with Solution Processing of Kesterite Cu2ZnSnS4 Solar Cells on Titanium Substrates
title_full_unstemmed Successes and Challenges Associated with Solution Processing of Kesterite Cu2ZnSnS4 Solar Cells on Titanium Substrates
title_sort Successes and Challenges Associated with Solution Processing of Kesterite Cu2ZnSnS4 Solar Cells on Titanium Substrates
author_id_str_mv e4ae52ae9b63b7b6da834c460ee3bb2d
809395460ab1e6b53a906b136d919c41
4dc059714847cb22ed922ab058950560
c426b1c1b0123d7057c1b969083cea69
a210327b52472cfe8df9b8108d661457
author_id_fullname_str_mv e4ae52ae9b63b7b6da834c460ee3bb2d_***_Zhengfei Wei
809395460ab1e6b53a906b136d919c41_***_Tom Dunlop
4dc059714847cb22ed922ab058950560_***_Cecile Charbonneau
c426b1c1b0123d7057c1b969083cea69_***_David Worsley
a210327b52472cfe8df9b8108d661457_***_Trystan Watson
author Zhengfei Wei
Tom Dunlop
Cecile Charbonneau
David Worsley
Trystan Watson
author2 Zhengfei Wei
Tom Dunlop
Peter J. Heard
Cecile Charbonneau
David Worsley
Trystan Watson
format Journal article
container_title ACS Applied Energy Materials
container_volume 3
container_issue 4
container_start_page 3876
publishDate 2020
institution Swansea University
issn 2574-0962
2574-0962
doi_str_mv 10.1021/acsaem.0c00292
publisher American Chemical Society (ACS)
url http://dx.doi.org/10.1021/acsaem.0c00292
document_store_str 1
active_str 0
description Roll-to-roll (R2R) processing of solution-based Cu2ZnSn(S,Se)4 (CZT(S,Se)) solar cells on flexible metal foil is an attractive way to achieve cost-effective manufacturing of photovoltaics. In this work we report the first successful fabrication of solution-processed CZTS devices on a variety of titanium substrates with up to 2.88% power conversion efficiency (PCE) collected on flexible 75 μm Ti foil. A comparative study of device performance and properties is presented aiming to address key processing challenges. First, we show that a rapid transfer of heat through the titanium substrates is responsible for the accelerated crystallisation of kesterite films characterised with small grain size, a high density of grain boundaries and numerous pore sites near the Mo/CZTS interface which affect charge transport and enhance recombination in devices. Following this, we demonstrate the occurrence of metal ion diffusion induced by the high temperature treatment required for the sulfurization of the CZTS stack: Ti4+ ions are observed to migrate upwards to the Mo/CZTS interface whilst Cu1+ and Zn2+ ions diffuse through the Mo layer into the Ti substrate. Finally, residual stress data confirm the good adhesion of stacked materials throughout the sequential solution process. These findings are evidenced by combining electron imaging observations, elemental depth profiles generated by secondary ion mass spectrometry, and x-ray residual stress analysis of the Ti substrate.
published_date 2020-04-27T19:52:53Z
_version_ 1821345866172071936
score 11.04748