No Cover Image

Journal article 1011 views 214 downloads

Successes and Challenges Associated with Solution Processing of Kesterite Cu2ZnSnS4 Solar Cells on Titanium Substrates

Zhengfei Wei, Tom Dunlop Orcid Logo, Peter J. Heard, Cecile Charbonneau, David Worsley Orcid Logo, Trystan Watson Orcid Logo

ACS Applied Energy Materials, Volume: 3, Issue: 4, Pages: 3876 - 3883

Swansea University Authors: Zhengfei Wei, Tom Dunlop Orcid Logo, Cecile Charbonneau, David Worsley Orcid Logo, Trystan Watson Orcid Logo

Check full text

DOI (Published version): 10.1021/acsaem.0c00292

Abstract

Roll-to-roll (R2R) processing of solution-based Cu2ZnSn(S,Se)4 (CZT(S,Se)) solar cells on flexible metal foil is an attractive way to achieve cost-effective manufacturing of photovoltaics. In this work we report the first successful fabrication of solution-processed CZTS devices on a variety of tita...

Full description

Published in: ACS Applied Energy Materials
ISSN: 2574-0962 2574-0962
Published: American Chemical Society (ACS) 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa53824
Abstract: Roll-to-roll (R2R) processing of solution-based Cu2ZnSn(S,Se)4 (CZT(S,Se)) solar cells on flexible metal foil is an attractive way to achieve cost-effective manufacturing of photovoltaics. In this work we report the first successful fabrication of solution-processed CZTS devices on a variety of titanium substrates with up to 2.88% power conversion efficiency (PCE) collected on flexible 75 μm Ti foil. A comparative study of device performance and properties is presented aiming to address key processing challenges. First, we show that a rapid transfer of heat through the titanium substrates is responsible for the accelerated crystallisation of kesterite films characterised with small grain size, a high density of grain boundaries and numerous pore sites near the Mo/CZTS interface which affect charge transport and enhance recombination in devices. Following this, we demonstrate the occurrence of metal ion diffusion induced by the high temperature treatment required for the sulfurization of the CZTS stack: Ti4+ ions are observed to migrate upwards to the Mo/CZTS interface whilst Cu1+ and Zn2+ ions diffuse through the Mo layer into the Ti substrate. Finally, residual stress data confirm the good adhesion of stacked materials throughout the sequential solution process. These findings are evidenced by combining electron imaging observations, elemental depth profiles generated by secondary ion mass spectrometry, and x-ray residual stress analysis of the Ti substrate.
Keywords: CZTS; titanium; solar cell; stress; SIMS
Issue: 4
Start Page: 3876
End Page: 3883