Journal article 885 views 625 downloads
Ecoflex polymer of different Shore hardnesses: Experimental investigations and constitutive modelling
Mechanics of Materials, Volume: 144, Start page: 103366
Swansea University Author: Mokarram Hossain
-
PDF | Accepted Manuscript
Distributed under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) 4.0 International
Download (1.55MB)
DOI (Published version): 10.1016/j.mechmat.2020.103366
Abstract
Ecoflex, a commercially available silicone polymer, has attracted considerable attention due to its wide range of applications. The polymer has various Shore hardnesses that represent its wide range of stiffnesses. In this contribution, we have conducted a plethora of experiments under the uniaxial...
Published in: | Mechanics of Materials |
---|---|
ISSN: | 0167-6636 |
Published: |
Elsevier BV
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa53571 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
Ecoflex, a commercially available silicone polymer, has attracted considerable attention due to its wide range of applications. The polymer has various Shore hardnesses that represent its wide range of stiffnesses. In this contribution, we have conducted a plethora of experiments under the uniaxial mode of tensile deformation. These experiments consist of loading-unloading cyclic tests, stretchability tests, single-step relaxation tests, Mullins effect tests, stress recovery tests, and temperature-dependence tests at different strain levels. All tests are revisited with Ecoflex of five Shore hardnesses ranging from Shore 00-10 to Shore 00-50. Extensive experimental findings illustrate that the material consists of an equilibrium stress part and an overstress part. Constitutive frameworks with an amplified strain invariant are proposed to predict the mechanical responses of Ecoflex over a wide range of Shore hardnesses. Afterwards, the frameworks are extended to capture the stress softening behaviour significantly observed in the material. Relevant examples illustrate that proposed constitutive models accurately predict stress-strain responses and the stress softening behaviour of Ecoflex. The current experimental study will work as a guide in selecting Ecoflex with an appropriate Shore hardness for applications in stretch sensors, soft robotics, and energy harvesters. Moreover, the novel concept of Shore-dependent modelling proposed herein can be applied to predict the stress-strain behaviour of other soft polymers appearing with various Shore hardnesses where there exist difficulties in obtaining experimental data of a particular Shore hardness. |
---|---|
Keywords: |
Ecoflex silicone rubber, Stress softening, Shore hardness, Constitutive model, Strain invariant amplification |
Start Page: |
103366 |