No Cover Image

Journal article 884 views 625 downloads

Ecoflex polymer of different Shore hardnesses: Experimental investigations and constitutive modelling

Zisheng Liao, Mokarram Hossain Orcid Logo, Xiaohu Yao

Mechanics of Materials, Volume: 144, Start page: 103366

Swansea University Author: Mokarram Hossain Orcid Logo

  • 53571.pdf

    PDF | Accepted Manuscript

    Distributed under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) 4.0 International

    Download (1.55MB)

Abstract

Ecoflex, a commercially available silicone polymer, has attracted considerable attention due to its wide range of applications. The polymer has various Shore hardnesses that represent its wide range of stiffnesses. In this contribution, we have conducted a plethora of experiments under the uniaxial...

Full description

Published in: Mechanics of Materials
ISSN: 0167-6636
Published: Elsevier BV 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa53571
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Ecoflex, a commercially available silicone polymer, has attracted considerable attention due to its wide range of applications. The polymer has various Shore hardnesses that represent its wide range of stiffnesses. In this contribution, we have conducted a plethora of experiments under the uniaxial mode of tensile deformation. These experiments consist of loading-unloading cyclic tests, stretchability tests, single-step relaxation tests, Mullins effect tests, stress recovery tests, and temperature-dependence tests at different strain levels. All tests are revisited with Ecoflex of five Shore hardnesses ranging from Shore 00-10 to Shore 00-50. Extensive experimental findings illustrate that the material consists of an equilibrium stress part and an overstress part. Constitutive frameworks with an amplified strain invariant are proposed to predict the mechanical responses of Ecoflex over a wide range of Shore hardnesses. Afterwards, the frameworks are extended to capture the stress softening behaviour significantly observed in the material. Relevant examples illustrate that proposed constitutive models accurately predict stress-strain responses and the stress softening behaviour of Ecoflex. The current experimental study will work as a guide in selecting Ecoflex with an appropriate Shore hardness for applications in stretch sensors, soft robotics, and energy harvesters. Moreover, the novel concept of Shore-dependent modelling proposed herein can be applied to predict the stress-strain behaviour of other soft polymers appearing with various Shore hardnesses where there exist difficulties in obtaining experimental data of a particular Shore hardness.
Keywords: Ecoflex silicone rubber, Stress softening, Shore hardness, Constitutive model, Strain invariant amplification
Start Page: 103366