Journal article 1156 views 153 downloads
Combinatorial Studies into the Effect of Thermally Inter-Diffused Magnesium on the Kinetics of Organic Coating Cathodic Delamination from Zinc Galvanized Steel
Journal of The Electrochemical Society, Volume: 167, Issue: 2, Start page: 021502
Swansea University Authors: Natalie Wint, Hamilton McMurray, Geraint Williams
-
PDF | Version of Record
Released under the terms of a Creative Commons Attribution 4.0 License (CC-BY).
Download (1.68MB)
DOI (Published version): 10.1149/1945-7111/ab6289
Abstract
This paper describes a high-throughput study into the role of Mg in preventing corrosion driven coating disbondment of organic coatings from Zn-Mg alloy galvanized steel. A graded Mg wedge is applied to a hot-dip zinc galvanised steel substrate using physical vapour deposition, and subsequently anne...
Published in: | Journal of The Electrochemical Society |
---|---|
ISSN: | 1945-7111 |
Published: |
The Electrochemical Society
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa53211 |
Abstract: |
This paper describes a high-throughput study into the role of Mg in preventing corrosion driven coating disbondment of organic coatings from Zn-Mg alloy galvanized steel. A graded Mg wedge is applied to a hot-dip zinc galvanised steel substrate using physical vapour deposition, and subsequently annealed to produce metallic inter-diffusion and formation of Mg2Zn11 intermetallic. An overcoat of electrically insulating polyvinyl butyral (PVB) is applied and corrosion is initiated from a penetrative coating defect using an aqueous electrolyte. The variation in Mg coating weight across the wedge facilitates a systematic investigation of the effect of Mg on Volta potential and the rate of corrosion driven cathodic coating disbondment using scanning Kelvin probe (SKP) potentiometry. The rate of cathodic disbondment is shown to decrease rapidly even at very low Mg coating weight (corresponding to 25 nm thickness before annealing). The results are explained in terms of the galvanic polarity of the corrosion cell formed between Zn exposed at the defect site, and the intact Zn-Mg layer at the metal-organic coating interface. |
---|---|
College: |
Faculty of Science and Engineering |
Issue: |
2 |
Start Page: |
021502 |