Journal article 1261 views 253 downloads
3D Printed SnSe Thermoelectric Generators with High Figure of Merit
Advanced Energy Materials, Volume: 9, Issue: 26
Swansea University Authors: David Beynon , Matthew Burton , Trystan Watson , Nicholas Lavery , Matt Carnie
-
PDF | Version of Record
Distributed under the terms of a Creative Commons Attribution (CC-BY) Licence.
Download (2.8MB)
DOI (Published version): 10.1002/aenm.201900201
Abstract
Since the discovery of the record figure of merit (ZT) of 2.6 ± 0.3 in tin selenide (SnSe), the material has attracted much attention in the field of thermoelectrics. This paper reports a novel pseudo‐3D printing technique to fabricate bulk SnSe thermoelectric elements, allowing for the fabrication...
Published in: | Advanced Energy Materials |
---|---|
ISSN: | 1614-6832 1614-6840 |
Published: |
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa50643 |
first_indexed |
2019-06-05T11:08:04Z |
---|---|
last_indexed |
2020-12-18T04:11:48Z |
id |
cronfa50643 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-12-17T10:22:30.8275808</datestamp><bib-version>v2</bib-version><id>50643</id><entry>2019-06-05</entry><title>3D Printed SnSe Thermoelectric Generators with High Figure of Merit</title><swanseaauthors><author><sid>f5cf40043658d0b8a747ef6224019939</sid><ORCID>0000-0002-8189-9489</ORCID><firstname>David</firstname><surname>Beynon</surname><name>David Beynon</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>2deade2806e39b1f749e9cf67ac640b2</sid><ORCID>0000-0002-0376-6322</ORCID><firstname>Matthew</firstname><surname>Burton</surname><name>Matthew Burton</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>9f102ff59824fd4f7ce3d40144304395</sid><ORCID>0000-0003-0953-5936</ORCID><firstname>Nicholas</firstname><surname>Lavery</surname><name>Nicholas Lavery</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>73b367694366a646b90bb15db32bb8c0</sid><ORCID>0000-0002-4232-1967</ORCID><firstname>Matt</firstname><surname>Carnie</surname><name>Matt Carnie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-06-05</date><deptcode>EAAS</deptcode><abstract>Since the discovery of the record figure of merit (ZT) of 2.6 ± 0.3 in tin selenide (SnSe), the material has attracted much attention in the field of thermoelectrics. This paper reports a novel pseudo‐3D printing technique to fabricate bulk SnSe thermoelectric elements, allowing for the fabrication of standard configuration thermoelectric generators. In contrast to fabrication examples presented to date, this technique is potentially very low‐cost and allows for facile, scalable, and rapid fabrication. Bulk SnSe thermoelectric elements are produced and characterized over a wide range of temperatures. An element printed from an ink with 4% organic binder produces the highest performance, with a ZT value of 1.7 (±0.25) at 758 K. This is the highest ZT reported of any printed thermoelectric material, and the first bulk printed material to operate at this temperature. Finally, a proof‐of‐concept, all printed SnSe thermoelectric generator is presented, producing 20 µW at 772 K.</abstract><type>Journal Article</type><journal>Advanced Energy Materials</journal><volume>9</volume><journalNumber>26</journalNumber><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1614-6832</issnPrint><issnElectronic>1614-6840</issnElectronic><keywords/><publishedDay>12</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-07-12</publishedDate><doi>10.1002/aenm.201900201</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><degreesponsorsfunders>RCUK</degreesponsorsfunders><apcterm/><lastEdited>2020-12-17T10:22:30.8275808</lastEdited><Created>2019-06-05T09:34:47.1112462</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering</level></path><authors><author><firstname>David</firstname><surname>Beynon</surname><orcid>0000-0002-8189-9489</orcid><order>1</order></author><author><firstname>Matthew</firstname><surname>Burton</surname><orcid>0000-0002-0376-6322</orcid><order>2</order></author><author><firstname>Shahin</firstname><surname>Mehraban</surname><order>3</order></author><author><firstname>David</firstname><surname>Beynon</surname><order>4</order></author><author><firstname>James</firstname><surname>McGettrick</surname><order>5</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>6</order></author><author><firstname>Nicholas</firstname><surname>Lavery</surname><orcid>0000-0003-0953-5936</orcid><order>7</order></author><author><firstname>Matt</firstname><surname>Carnie</surname><orcid>0000-0002-4232-1967</orcid><order>8</order></author></authors><documents><document><filename>0050643-05062019093720.pdf</filename><originalFilename>Burtonetal.-2019-3DPrintedSnSeThermoelectricGeneratorswithHighFigureofMerit.pdf</originalFilename><uploaded>2019-06-05T09:37:20.1530000</uploaded><type>Output</type><contentLength>2908260</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-06-05T00:00:00.0000000</embargoDate><documentNotes>Distributed under the terms of a Creative Commons Attribution (CC-BY) Licence.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-12-17T10:22:30.8275808 v2 50643 2019-06-05 3D Printed SnSe Thermoelectric Generators with High Figure of Merit f5cf40043658d0b8a747ef6224019939 0000-0002-8189-9489 David Beynon David Beynon true false 2deade2806e39b1f749e9cf67ac640b2 0000-0002-0376-6322 Matthew Burton Matthew Burton true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 9f102ff59824fd4f7ce3d40144304395 0000-0003-0953-5936 Nicholas Lavery Nicholas Lavery true false 73b367694366a646b90bb15db32bb8c0 0000-0002-4232-1967 Matt Carnie Matt Carnie true false 2019-06-05 EAAS Since the discovery of the record figure of merit (ZT) of 2.6 ± 0.3 in tin selenide (SnSe), the material has attracted much attention in the field of thermoelectrics. This paper reports a novel pseudo‐3D printing technique to fabricate bulk SnSe thermoelectric elements, allowing for the fabrication of standard configuration thermoelectric generators. In contrast to fabrication examples presented to date, this technique is potentially very low‐cost and allows for facile, scalable, and rapid fabrication. Bulk SnSe thermoelectric elements are produced and characterized over a wide range of temperatures. An element printed from an ink with 4% organic binder produces the highest performance, with a ZT value of 1.7 (±0.25) at 758 K. This is the highest ZT reported of any printed thermoelectric material, and the first bulk printed material to operate at this temperature. Finally, a proof‐of‐concept, all printed SnSe thermoelectric generator is presented, producing 20 µW at 772 K. Journal Article Advanced Energy Materials 9 26 1614-6832 1614-6840 12 7 2019 2019-07-12 10.1002/aenm.201900201 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University RCUK 2020-12-17T10:22:30.8275808 2019-06-05T09:34:47.1112462 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering David Beynon 0000-0002-8189-9489 1 Matthew Burton 0000-0002-0376-6322 2 Shahin Mehraban 3 David Beynon 4 James McGettrick 5 Trystan Watson 0000-0002-8015-1436 6 Nicholas Lavery 0000-0003-0953-5936 7 Matt Carnie 0000-0002-4232-1967 8 0050643-05062019093720.pdf Burtonetal.-2019-3DPrintedSnSeThermoelectricGeneratorswithHighFigureofMerit.pdf 2019-06-05T09:37:20.1530000 Output 2908260 application/pdf Version of Record true 2019-06-05T00:00:00.0000000 Distributed under the terms of a Creative Commons Attribution (CC-BY) Licence. true eng https://creativecommons.org/licenses/by/4.0/ |
title |
3D Printed SnSe Thermoelectric Generators with High Figure of Merit |
spellingShingle |
3D Printed SnSe Thermoelectric Generators with High Figure of Merit David Beynon Matthew Burton Trystan Watson Nicholas Lavery Matt Carnie |
title_short |
3D Printed SnSe Thermoelectric Generators with High Figure of Merit |
title_full |
3D Printed SnSe Thermoelectric Generators with High Figure of Merit |
title_fullStr |
3D Printed SnSe Thermoelectric Generators with High Figure of Merit |
title_full_unstemmed |
3D Printed SnSe Thermoelectric Generators with High Figure of Merit |
title_sort |
3D Printed SnSe Thermoelectric Generators with High Figure of Merit |
author_id_str_mv |
f5cf40043658d0b8a747ef6224019939 2deade2806e39b1f749e9cf67ac640b2 a210327b52472cfe8df9b8108d661457 9f102ff59824fd4f7ce3d40144304395 73b367694366a646b90bb15db32bb8c0 |
author_id_fullname_str_mv |
f5cf40043658d0b8a747ef6224019939_***_David Beynon 2deade2806e39b1f749e9cf67ac640b2_***_Matthew Burton a210327b52472cfe8df9b8108d661457_***_Trystan Watson 9f102ff59824fd4f7ce3d40144304395_***_Nicholas Lavery 73b367694366a646b90bb15db32bb8c0_***_Matt Carnie |
author |
David Beynon Matthew Burton Trystan Watson Nicholas Lavery Matt Carnie |
author2 |
David Beynon Matthew Burton Shahin Mehraban David Beynon James McGettrick Trystan Watson Nicholas Lavery Matt Carnie |
format |
Journal article |
container_title |
Advanced Energy Materials |
container_volume |
9 |
container_issue |
26 |
publishDate |
2019 |
institution |
Swansea University |
issn |
1614-6832 1614-6840 |
doi_str_mv |
10.1002/aenm.201900201 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Since the discovery of the record figure of merit (ZT) of 2.6 ± 0.3 in tin selenide (SnSe), the material has attracted much attention in the field of thermoelectrics. This paper reports a novel pseudo‐3D printing technique to fabricate bulk SnSe thermoelectric elements, allowing for the fabrication of standard configuration thermoelectric generators. In contrast to fabrication examples presented to date, this technique is potentially very low‐cost and allows for facile, scalable, and rapid fabrication. Bulk SnSe thermoelectric elements are produced and characterized over a wide range of temperatures. An element printed from an ink with 4% organic binder produces the highest performance, with a ZT value of 1.7 (±0.25) at 758 K. This is the highest ZT reported of any printed thermoelectric material, and the first bulk printed material to operate at this temperature. Finally, a proof‐of‐concept, all printed SnSe thermoelectric generator is presented, producing 20 µW at 772 K. |
published_date |
2019-07-12T07:48:20Z |
_version_ |
1822387445087338496 |
score |
11.048561 |