No Cover Image

Journal article 960 views 118 downloads

The Influence of Process Parameters and Build Orientation on the Creep Behaviour of a Laser Powder Bed Fused Ni-based Superalloy for Aerospace Applications

Hani Hilal, Robert Lancaster Orcid Logo, Spencer Jeffs Orcid Logo, John Boswell, David Stapleton, Gavin Baxter

Materials, Volume: 12, Issue: 9, Start page: 1390

Swansea University Authors: Robert Lancaster Orcid Logo, Spencer Jeffs Orcid Logo

  • hilal2019.pdf

    PDF | Version of Record

    Distributed under the terms of a Creative Commons Attribution (CC-BY-4.0)

    Download (5.63MB)

Check full text

DOI (Published version): 10.3390/ma12091390

Abstract

Additive Layer Manufacturing (ALM) is an innovative net shape manufacturing technology that offers the ability to produce highly intricate components not possible through traditional wrought and cast procedures. Consequently, the aerospace industry is becoming ever more attentive in exploiting such...

Full description

Published in: Materials
ISSN: 1996-1944
Published: 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa50161
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Additive Layer Manufacturing (ALM) is an innovative net shape manufacturing technology that offers the ability to produce highly intricate components not possible through traditional wrought and cast procedures. Consequently, the aerospace industry is becoming ever more attentive in exploiting such technology for the fabrication of nickel-based superalloys in an attempt to drive further advancements within the holistic gas turbine. Given this, the requirement for the mechanical characterisation of such material is rising in parallel, with limitations in the availability of material processed restricting conventional mechanical testing; particularly with the abundance of process parameters to evaluate. As such, the Small Punch Creep (SPC) test method has been deemed an effective tool to rank the elevated temperature performance of alloys processed through ALM, credited to the small volumes of material utilised in each test and the ability to sample material from discrete locations. In this research, the SPC test will be used to assess the influence of a number of key process variables on the mechanical performance of Laser Powder Bed Fused (LPBF) Ni-based superalloy CM247LC. This will also include an investigation into the influence of build orientation and post-build treatment on creep performance, whilst considering the structural integrity of the different experimental builds.
College: Faculty of Science and Engineering
Issue: 9
Start Page: 1390