Conference Paper/Proceeding/Abstract 1019 views 779 downloads
Theory and Applications of Models of Computation
Volume: 11436, Start page: 378
Swansea University Author: Arno Pauly
-
PDF | Accepted Manuscript
Download (466.62KB)
DOI (Published version): 10.1007/978-3-030-14812-6
Abstract
We study the Weihrauch degrees of closed choice for finite sets, closed choice for convex sets and sorting infinite sequences over finite alphabets. Our main result is that choice for finite sets of cardinality $i + 1$ is reducible to choice for convex sets in dimension $j$, which in turn is reducib...
ISBN: | 978-3-030-14811-9 978-3-030-14812-6 |
---|---|
ISSN: | 0302-9743 1611-3349 |
Published: |
Japan
15th Annual Conference, TAMC 2019, Kitakyushu, Japan, April 13–16, 2019
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa49944 |
first_indexed |
2019-04-09T13:04:51Z |
---|---|
last_indexed |
2019-05-01T11:40:10Z |
id |
cronfa49944 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-04-26T15:52:23.2707948</datestamp><bib-version>v2</bib-version><id>49944</id><entry>2019-04-08</entry><title>Theory and Applications of Models of Computation</title><swanseaauthors><author><sid>17a56a78ec04e7fc47b7fe18394d7245</sid><ORCID>0000-0002-0173-3295</ORCID><firstname>Arno</firstname><surname>Pauly</surname><name>Arno Pauly</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-04-08</date><deptcode>MACS</deptcode><abstract>We study the Weihrauch degrees of closed choice for finite sets, closed choice for convex sets and sorting infinite sequences over finite alphabets. Our main result is that choice for finite sets of cardinality $i + 1$ is reducible to choice for convex sets in dimension $j$, which in turn is reducible to sorting infinite sequences over an alphabet of size $k + 1$, iff $i \leq j \leq k$. Our proofs invoke Kleene's recursion theorem, and we describe in some detail how Kleene's recursion theorem gives rise to a technique for proving separations of Weihrauch degrees.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal/><volume>11436</volume><paginationStart>378</paginationStart><publisher>15th Annual Conference, TAMC 2019, Kitakyushu, Japan, April 13–16, 2019</publisher><placeOfPublication>Japan</placeOfPublication><isbnPrint>978-3-030-14811-9</isbnPrint><isbnElectronic>978-3-030-14812-6</isbnElectronic><issnPrint>0302-9743</issnPrint><issnElectronic>1611-3349</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-12-31</publishedDate><doi>10.1007/978-3-030-14812-6</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-04-26T15:52:23.2707948</lastEdited><Created>2019-04-08T16:22:22.1226915</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Takayuki</firstname><surname>Kihara</surname><order>1</order></author><author><firstname>Arno</firstname><surname>Pauly</surname><orcid>0000-0002-0173-3295</orcid><order>2</order></author></authors><documents><document><filename>0049944-08042019162610.pdf</filename><originalFilename>convexchoice2-tamc.pdf</originalFilename><uploaded>2019-04-08T16:26:10.3000000</uploaded><type>Output</type><contentLength>445641</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-04-08T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2019-04-26T15:52:23.2707948 v2 49944 2019-04-08 Theory and Applications of Models of Computation 17a56a78ec04e7fc47b7fe18394d7245 0000-0002-0173-3295 Arno Pauly Arno Pauly true false 2019-04-08 MACS We study the Weihrauch degrees of closed choice for finite sets, closed choice for convex sets and sorting infinite sequences over finite alphabets. Our main result is that choice for finite sets of cardinality $i + 1$ is reducible to choice for convex sets in dimension $j$, which in turn is reducible to sorting infinite sequences over an alphabet of size $k + 1$, iff $i \leq j \leq k$. Our proofs invoke Kleene's recursion theorem, and we describe in some detail how Kleene's recursion theorem gives rise to a technique for proving separations of Weihrauch degrees. Conference Paper/Proceeding/Abstract 11436 378 15th Annual Conference, TAMC 2019, Kitakyushu, Japan, April 13–16, 2019 Japan 978-3-030-14811-9 978-3-030-14812-6 0302-9743 1611-3349 31 12 2019 2019-12-31 10.1007/978-3-030-14812-6 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2019-04-26T15:52:23.2707948 2019-04-08T16:22:22.1226915 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Takayuki Kihara 1 Arno Pauly 0000-0002-0173-3295 2 0049944-08042019162610.pdf convexchoice2-tamc.pdf 2019-04-08T16:26:10.3000000 Output 445641 application/pdf Accepted Manuscript true 2019-04-08T00:00:00.0000000 true eng |
title |
Theory and Applications of Models of Computation |
spellingShingle |
Theory and Applications of Models of Computation Arno Pauly |
title_short |
Theory and Applications of Models of Computation |
title_full |
Theory and Applications of Models of Computation |
title_fullStr |
Theory and Applications of Models of Computation |
title_full_unstemmed |
Theory and Applications of Models of Computation |
title_sort |
Theory and Applications of Models of Computation |
author_id_str_mv |
17a56a78ec04e7fc47b7fe18394d7245 |
author_id_fullname_str_mv |
17a56a78ec04e7fc47b7fe18394d7245_***_Arno Pauly |
author |
Arno Pauly |
author2 |
Takayuki Kihara Arno Pauly |
format |
Conference Paper/Proceeding/Abstract |
container_volume |
11436 |
container_start_page |
378 |
publishDate |
2019 |
institution |
Swansea University |
isbn |
978-3-030-14811-9 978-3-030-14812-6 |
issn |
0302-9743 1611-3349 |
doi_str_mv |
10.1007/978-3-030-14812-6 |
publisher |
15th Annual Conference, TAMC 2019, Kitakyushu, Japan, April 13–16, 2019 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
description |
We study the Weihrauch degrees of closed choice for finite sets, closed choice for convex sets and sorting infinite sequences over finite alphabets. Our main result is that choice for finite sets of cardinality $i + 1$ is reducible to choice for convex sets in dimension $j$, which in turn is reducible to sorting infinite sequences over an alphabet of size $k + 1$, iff $i \leq j \leq k$. Our proofs invoke Kleene's recursion theorem, and we describe in some detail how Kleene's recursion theorem gives rise to a technique for proving separations of Weihrauch degrees. |
published_date |
2019-12-31T13:49:57Z |
_version_ |
1821413629328621568 |
score |
11.247077 |