No Cover Image

Conference Paper/Proceeding/Abstract 1019 views 779 downloads

Theory and Applications of Models of Computation

Takayuki Kihara, Arno Pauly Orcid Logo

Volume: 11436, Start page: 378

Swansea University Author: Arno Pauly Orcid Logo

Abstract

We study the Weihrauch degrees of closed choice for finite sets, closed choice for convex sets and sorting infinite sequences over finite alphabets. Our main result is that choice for finite sets of cardinality $i + 1$ is reducible to choice for convex sets in dimension $j$, which in turn is reducib...

Full description

ISBN: 978-3-030-14811-9 978-3-030-14812-6
ISSN: 0302-9743 1611-3349
Published: Japan 15th Annual Conference, TAMC 2019, Kitakyushu, Japan, April 13–16, 2019 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa49944
Abstract: We study the Weihrauch degrees of closed choice for finite sets, closed choice for convex sets and sorting infinite sequences over finite alphabets. Our main result is that choice for finite sets of cardinality $i + 1$ is reducible to choice for convex sets in dimension $j$, which in turn is reducible to sorting infinite sequences over an alphabet of size $k + 1$, iff $i \leq j \leq k$. Our proofs invoke Kleene's recursion theorem, and we describe in some detail how Kleene's recursion theorem gives rise to a technique for proving separations of Weihrauch degrees.
College: Faculty of Science and Engineering
Start Page: 378