Book chapter 856 views 238 downloads
Generating Optimal Code Using Answer Set Programming
Logic Programming and Nonmonotonic Reasoning, Volume: 5753, Pages: 554 - 559
Swansea University Author: Tom Crick
-
PDF | Accepted Manuscript
Download (123.67KB)
DOI (Published version): 10.1007/978-3-642-04238-6_57
Abstract
This paper presents the Total Optimisation using Answer Set Technology (TOAST) system, which can be used to generate optimal code sequences for machine architectures via a technique known as superoptimisation. Answer set programming (ASP) is utilised as the modelling and computational framework for...
Published in: | Logic Programming and Nonmonotonic Reasoning |
---|---|
ISBN: | 978-3-642-04237-9 978-3-642-04238-6 |
ISSN: | 0302-9743 1611-3349 |
Published: |
Potsdam, Germany
Springer
2009
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa43399 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2018-08-14T15:01:05Z |
---|---|
last_indexed |
2023-01-11T14:20:04Z |
id |
cronfa43399 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-12-18T17:48:34.2537400</datestamp><bib-version>v2</bib-version><id>43399</id><entry>2018-08-14</entry><title>Generating Optimal Code Using Answer Set Programming</title><swanseaauthors><author><sid>200c66ef0fc55391f736f6e926fb4b99</sid><ORCID>0000-0001-5196-9389</ORCID><firstname>Tom</firstname><surname>Crick</surname><name>Tom Crick</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-08-14</date><deptcode>EDUC</deptcode><abstract>This paper presents the Total Optimisation using Answer Set Technology (TOAST) system, which can be used to generate optimal code sequences for machine architectures via a technique known as superoptimisation. Answer set programming (ASP) is utilised as the modelling and computational framework for searching over the large, complex search spaces and for proving the functional equivalence of two code sequences. Experimental results are given showing the progress made in solver performance over the previous few years, along with an outline of future developments to the system and applications within compiler toolchains.</abstract><type>Book chapter</type><journal>Logic Programming and Nonmonotonic Reasoning</journal><volume>5753</volume><journalNumber/><paginationStart>554</paginationStart><paginationEnd>559</paginationEnd><publisher>Springer</publisher><placeOfPublication>Potsdam, Germany</placeOfPublication><isbnPrint>978-3-642-04237-9</isbnPrint><isbnElectronic>978-3-642-04238-6</isbnElectronic><issnPrint>0302-9743</issnPrint><issnElectronic>1611-3349</issnElectronic><keywords/><publishedDay>14</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2009</publishedYear><publishedDate>2009-09-14</publishedDate><doi>10.1007/978-3-642-04238-6_57</doi><url>https://link.springer.com/chapter/10.1007%2F978-3-642-04238-6_57</url><notes>10th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2009)</notes><college>COLLEGE NANME</college><department>Education</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EDUC</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-12-18T17:48:34.2537400</lastEdited><Created>2018-08-14T15:45:17.0980503</Created><path><level id="1">Faculty of Humanities and Social Sciences</level><level id="2">School of Social Sciences - Education and Childhood Studies</level></path><authors><author><firstname>Tom</firstname><surname>Crick</surname><orcid>0000-0001-5196-9389</orcid><order>1</order></author><author><firstname>Martin</firstname><surname>Brain</surname><order>2</order></author><author><firstname>Marina De</firstname><surname>Vos</surname><order>3</order></author><author><firstname>John</firstname><surname>Fitch</surname><order>4</order></author></authors><documents><document><filename>0043399-12092018065450.pdf</filename><originalFilename>paper51_camera_ready.pdf</originalFilename><uploaded>2018-09-12T06:54:50.9670000</uploaded><type>Output</type><contentLength>95693</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-09-12T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-12-18T17:48:34.2537400 v2 43399 2018-08-14 Generating Optimal Code Using Answer Set Programming 200c66ef0fc55391f736f6e926fb4b99 0000-0001-5196-9389 Tom Crick Tom Crick true false 2018-08-14 EDUC This paper presents the Total Optimisation using Answer Set Technology (TOAST) system, which can be used to generate optimal code sequences for machine architectures via a technique known as superoptimisation. Answer set programming (ASP) is utilised as the modelling and computational framework for searching over the large, complex search spaces and for proving the functional equivalence of two code sequences. Experimental results are given showing the progress made in solver performance over the previous few years, along with an outline of future developments to the system and applications within compiler toolchains. Book chapter Logic Programming and Nonmonotonic Reasoning 5753 554 559 Springer Potsdam, Germany 978-3-642-04237-9 978-3-642-04238-6 0302-9743 1611-3349 14 9 2009 2009-09-14 10.1007/978-3-642-04238-6_57 https://link.springer.com/chapter/10.1007%2F978-3-642-04238-6_57 10th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2009) COLLEGE NANME Education COLLEGE CODE EDUC Swansea University 2022-12-18T17:48:34.2537400 2018-08-14T15:45:17.0980503 Faculty of Humanities and Social Sciences School of Social Sciences - Education and Childhood Studies Tom Crick 0000-0001-5196-9389 1 Martin Brain 2 Marina De Vos 3 John Fitch 4 0043399-12092018065450.pdf paper51_camera_ready.pdf 2018-09-12T06:54:50.9670000 Output 95693 application/pdf Accepted Manuscript true 2018-09-12T00:00:00.0000000 true eng |
title |
Generating Optimal Code Using Answer Set Programming |
spellingShingle |
Generating Optimal Code Using Answer Set Programming Tom Crick |
title_short |
Generating Optimal Code Using Answer Set Programming |
title_full |
Generating Optimal Code Using Answer Set Programming |
title_fullStr |
Generating Optimal Code Using Answer Set Programming |
title_full_unstemmed |
Generating Optimal Code Using Answer Set Programming |
title_sort |
Generating Optimal Code Using Answer Set Programming |
author_id_str_mv |
200c66ef0fc55391f736f6e926fb4b99 |
author_id_fullname_str_mv |
200c66ef0fc55391f736f6e926fb4b99_***_Tom Crick |
author |
Tom Crick |
author2 |
Tom Crick Martin Brain Marina De Vos John Fitch |
format |
Book chapter |
container_title |
Logic Programming and Nonmonotonic Reasoning |
container_volume |
5753 |
container_start_page |
554 |
publishDate |
2009 |
institution |
Swansea University |
isbn |
978-3-642-04237-9 978-3-642-04238-6 |
issn |
0302-9743 1611-3349 |
doi_str_mv |
10.1007/978-3-642-04238-6_57 |
publisher |
Springer |
college_str |
Faculty of Humanities and Social Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofhumanitiesandsocialsciences |
hierarchy_top_title |
Faculty of Humanities and Social Sciences |
hierarchy_parent_id |
facultyofhumanitiesandsocialsciences |
hierarchy_parent_title |
Faculty of Humanities and Social Sciences |
department_str |
School of Social Sciences - Education and Childhood Studies{{{_:::_}}}Faculty of Humanities and Social Sciences{{{_:::_}}}School of Social Sciences - Education and Childhood Studies |
url |
https://link.springer.com/chapter/10.1007%2F978-3-642-04238-6_57 |
document_store_str |
1 |
active_str |
0 |
description |
This paper presents the Total Optimisation using Answer Set Technology (TOAST) system, which can be used to generate optimal code sequences for machine architectures via a technique known as superoptimisation. Answer set programming (ASP) is utilised as the modelling and computational framework for searching over the large, complex search spaces and for proving the functional equivalence of two code sequences. Experimental results are given showing the progress made in solver performance over the previous few years, along with an outline of future developments to the system and applications within compiler toolchains. |
published_date |
2009-09-14T03:54:39Z |
_version_ |
1763752730669613056 |
score |
11.037056 |