

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Logic Programming and Nonmonotonic Reasoning

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa43399

Book chapter :

Crick, T., Brain, M., De Vos, M. & Fitch, J. (2009). Generating Optimal Code Using Answer Set Programming. Logic

Programming and Nonmonotonic Reasoning, (pp. 554-559). Potsdam, Germany: Springer.

http://dx.doi.org/10.1007/978-3-642-04238-6_57

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa43399
http://dx.doi.org/10.1007/978-3-642-04238-6_57
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Generating Optimal Code using Answer Set
Programming

Tom Crick, Martin Brain, Marina De Vos and John Fitch

Department of Computer Science
University of Bath
Bath BA2 7AY, UK

{tc,mjb,mdv,jpff}@cs.bath.ac.uk

Abstract This paper presents the Total Optimisation using Answer Set Techno-
logy (TOAST) system, which can be used to generate optimal code sequences for
machine architectures via a technique known as superoptimisation. Answer set
programming (ASP) is utilised as the modelling and computational framework
for searching over the large, complex search spaces and for proving the functional
equivalence of two code sequences. Experimental results are given showing the
progress made in solver performance over the previous few years, along with an
outline of future developments to the system and applications within compiler
toolchains.

1 Introduction

Within the field of compiler development the term optimisation is something of a mis-
nomer. Compilers typically use a series of templates to generate machine level instruc-
tions from the parse tree of the target program. An optimisation phase [1] then attempts
to improve this code (with respect to both size and performance) by applying a set
of transforms, reductions and equivalences. In many modern compilers, this results in
significant improvements but it is very unlikely to produce optimal sequences of in-
structions; and if it does, it will not be able to determine that they are indeed optimal.
To further complicate matters, it is often not clear which order these improvement tech-
niques should be applied as they may enable or inhibit further improvements. The cur-
rent order of application in most compilers is a result of experience and trial and error
rather than design.

In a relatively narrow, but significant range of applications, this approach to code
generation is not sufficient. In the inner loops of high-performance computing tasks,
performance critical system libraries, many embedded applications [6] and even the
templates used for code generation within compilers [5] (both conventional and Just
In Time (JIT) compilers within virtual machines), if it is possible to generate optimal
code, then it would be desirable to do so.

Superoptimisation [8] is an approach that views code generation for loop-free seg-
ments of code as a combinatorial search problem. Thus by utilising appropriate search
techniques it is possible to generate genuinely optimal instruction sequences. The Total
Optimisation using Answer Set Technology (TOAST) system uses answer set program-
ming (ASP) [3] as a computational framework to solve the superoptimisation search

problem. A model of the machine architecture is created in AnsProlog and answer set
solvers are used to generate and verify candidate optimal instruction sequences. In this
way, developments in solver technology can thus directly improve the performance of
the superoptimiser. The flexibility of AnsProlog also allows arbitrary constraints to be
added to the search with minimal effort, something that is very difficult in the case of
procedural superoptimisers, but of huge importance, as it allows a superoptimiser to be
used to augment its own set of constraints. For reasons of compactness, this paper does
not include a description of the answer set semantics or ASP; an in-depth description
can be found in [3].

2 Superoptimisation

Massalin [8] coined the term superoptimisation to refer to an alternative approach to
code generation for short, loop-free sections of machine code. Rather than starting with
crude, template-generated code and running multiple improvement passes, a superop-
timiser starts with the specification of a function and performs a directed search for a
sequence of instructions that meets this specification.

Superoptimisation naturally decomposes into two tasks: searching for candidate se-
quences that meet a reduced set of conditions and then verifying that they meet the
required specification. The raw search space of possible sequences of a given length is
at least exponential in the number of instructions; potentially factorial if the order of
inputs to the sequence is considered. However, a number of constraints and heuristics
exist that can considerably reduce the space that has to be searched. For example, if an
instruction computes a commutative function (such as addition) then only one ordering
of inputs needs to be considered; likewise, if instructions can be reordered then only
one ordering need by searched. Handling the size and complexity of this space is the
current limit on superoptimiser performance.

Despite significant potential, superoptimisation has received relatively little research
within the field of code generation and optimisation. Recent work [5] has utilised a
range of techniques to handle the large search spaces involved in superoptimisation,
including automatic theorem proving [7] and satisfiability testing [2], showing the vi-
ability of the approach for specific application areas. However, a major deficiency of
the existing superoptimising implementations is that there is no guarantee of optimal-
ity. Due to the significant computational burden of proving the functional equivalence
of two non-trivial sequences of code, most of the existing implementations use a rep-
resentative test to shortcut the verification, or timeout and discard sequences that take
too long to verify.

3 The TOAST System

The TOAST provably optimal code generation system consists of modular interacting
components that generate answer set programs and parse answer sets, with a controlling
interface that utilises these components to generate a shorter, superoptimised version
of the original input sequence. A preliminary version of the TOAST system was first
presented in [4].

in: v32
in: v32
inst: land i1 i2
inst: add i1 1
inst: add i1 2
inst: sub i0 3
out: v32

Listing 1. A program in TOAST input format

3.1 Architecture

The TOAST system supports multiple processor types, with processor specific informa-
tion stored in a description file which provides meta-information about the processor, as
well as which instructions are available. The TOAST system currently supports the fol-
lowing architectures: MIPS R2000, SPARC V7 and SPARC V8, with more proposed.
Porting to a new architecture is simple and takes between a few hours and a week,
depending on how many of the instructions used have already been modelled.

TOAST accepts programs in an assembly language-like format as input. These are
used as the target of the search, to find the shortest sequence of instructions that has
the same output. The example given in Listing 1 defines a program of four instructions,
with two 32 bit inputs and one 32 bit output.

We assume that the cost of each instruction in the input program is the same; for
RISC-like processors where there are no cache or memory issues, and no pipeline
breaks this is a fair simplifying assumption. In the case of minimising memory taken by
the instruction stream, as might be used in mobile devices, this is the correct measure.

A set of vectors, binary values for each bit of each input, are generated in ASP. This
give a set of vectors for each possible path through the input code. The input program is
then ‘run’ with these vectors to generate constraints, giving the ‘correct’ values of the
outputs for each set of vectors.

By using the input vectors and output constraints (essentially start and end values),
we search for candidate sequences of length one, two, and so on, up to one less than the
length of the input sequence. The set of instruction sequences given by this necessarily
contains any optimal sequences, but may contain extra sequences that only give the
correct output for one particular set of inputs. Thus once a candidate set has been found,
TOAST searches within this candidate set, picking new vectors each time, until either
the the set of candidates is empty, in which case the search moves on to the next length,
or until the set of candidates stabilises.

When one or more candidate is found, they have to be verified for equivalence to the
original sequence, over all inputs. Searching can generate a large amount of candidate
sequences, so two verification steps are performed: an initial representative heuristic
test and a full equivalence test. pre-verify is a fast heuristic that uses a directed set of
vectors to perform a fast representative verify on the two programs. If pre-verify returns
false, then the candidate is discarded (i.e. it is definitely not equivalent); if true, then
a full verify must be performed to prove full equivalence. Empirical evidence suggests
that the pre-verify heuristic is important in quickly discarding invalid sequences, but it
is still necessary to validate a sequence with a full verify, as it is possible to generate
cases which can pass the heuristic, but will fail the full verification.

value(C,T,B) :- istream(C,P,land,R1,R2,none), pc(C,P,T), value(C,R1,B),
value(C,R2,B), register(R1), register(R2), colour(C),
position(C,P), time(C,T), bit(B).

-value(C,T,B) :- istream(C,P,land,R1,R2,none), pc(C,P,T), not value(C,T,B),
register(R1), register(R2), colour(C), position(C,P), time(C,T),
bit(B).

symmetricInstruction(land).

Listing 2. Logical AND (land) instruction encoded in AnsProlog

As noted in Section 2, the number of combinations covered by search is factorial in
the length of the sequences. In practise this is handled by a series of calls to a solver
with progressively increasing program sizes. Likewise verify searches for a refutation
in a space of combinations that is exponential in the number of input bits; effectively a
co-NP task and handled by a single invocation of a solver.

One key recent development is the buildMultiple tool which uses TOAST to build
and refine a series of additional constraints which augment the search component. It is
based on the observation that an optimal sequence of instructions will not contain a sub-
optimal instruction sequence. The search component of TOAST is used to generate a set
of all possible instructions sequences of a given length using a fixed number of inputs.
These are then superoptimised using TOAST; if they are sub-optimal or equivalent to
another sequence then they are abstracted to form additional constraints. Although this
procedure is time consuming, it produces very strong sets of constraints and only ever
needs to be run once for a given architecture. Critically, it shows a key advantage of us-
ing ASP; the flexibility to add extra constraints without changing the search algorithm.
With a procedural system, buildMultiple would simply not be possible.

3.2 AnsProlog Encodings

TOAST uses AnsProlog to model the integer processing unit of the target processors.
The majority of the model is at bit level, with AnsProlog rules relating input bits of an
instruction to the output bits.

The instruction sequence is represented as a series of facts, or in the case of search-
ing, a set of choice rules. These literals are then used by the instruction definitions to
control the value literals that give the value of various registers within the processor.
If the literal is in the answer set, the given bit is taken to be a 1, if the classically-negated
version of the literal is in the answer set then it is a 0. An example instruction definition
for a logical AND (land) is given in Listing 2. Note the use of negation as failure to
reduce the number of rules needed and the declaration that AND is symmetric, which
is used to reduce the search space.

Flow control rules define which instruction will be ‘executed’ at a given time step
by controlling the program counter (pc) literal. As ASP programs may need to simul-
taneously model multiple independent code streams (for example, when trying to verify
their equivalence), all literals are tagged with the abstract property ‘colour’. The inclu-
sion of the colour(C) literal in each rule then allows copies to be created for each
code stream during instantiation. In most cases, when only one code stream is used,
only one value of colour is defined and only one copy of each set of rules is produced;
the overhead involved is negligible. An example encoding is shown in Listing 3.

haveJumped(C,T) :- jump(C,T,J), colour(C), time(C,T), jumpSize(C,J).
pc(C,PCV+J,T+1) :- pc(C,PCV,T), jump(C,T,J), colour(C), position(C,PCV),

time(C,T), jumpSize(C,J).
pc(C,PCV+1,T+1) :- pc(C,PCV,T), not haveJumped(C,T), colour(C), position(C,PCV),

time(C,T).
pc(C,1,1).

Listing 3. Flow control rules encoded in AnsProlog

Flag control rules model the setting and checking of processor flags such as carry,
overflow, zero and negative; although generally only used for controlling conditional
branches and multi-word arithmetic, these flags are a source of many superoptimised
sequences [8].

4 Benchmarks

Benchmarks for the two main tasks of the TOAST system are given: searching for
candidate sequences and then verification of two sequences to show full equivalence
for all inputs.

The tests1 are for the SPARC V8 [9], a 32 bit RISC architecture family. All tests
were run on quad-core Intel 2.8GHz Xeon E5462 processors with 32GB RAM, run-
ning a variant of Scientific Linux. Programs were ground with GRINGO (2.0.0) and
tested with the following four solvers: CLASP, SMODELS, SMODELS-IE and SUP; all
tools were built in 32 bit mode. None of the AnsProlog programs generated within the
TOAST system require disjunction, aggregates or any other non-syntactic extensions.
All programs generated by the TOAST system are tight.

The search test (sequence4) attempts to find shorter optimal sequences for a four
instruction program, with two 32 bit inputs, as given in Listing 1. This sequence was
selected as an example of an optimal sequence that cannot be improved via superoptim-
isation, giving an approximate ceiling on the performance of the system. Programs ss1
to ss4 are searches over the spaces of 1 to 4 instructions respectively.

We performed two types of verification tests: one is which the two programs are
(non-trivially) the same, returning zero answer sets (verifytest1); and the second in
which the two programs differ on only one set of inputs, hence returning one answer
set (verifytest2). In these tests, we amended the input programs to demonstrate that the
TOAST system is able to verify sequences for 8 bit, 16 bit and 32 bit architectures.

Table 1 presents timings for the search and verify tests, with solver time outs oc-
curring after 100 hours. These results demonstrate that we are able to superoptimise
sequences for 32 bit architectures, while the projected growth figures suggest that a
fully verified build-once architecture library is feasible as is done in buildMultiple.

5 Future Work

The results in Table 1 show a significant improvement from the initial benchmarks
provided in [4]. Some of this is due to improvements in hardware, although the major-
ity of the improvement is due to the progress made in answer set solvers, particularly the

1 Available online from: http://www.cs.bath.ac.uk/tom/toast/

sequence4 verifytest1 verifytest2
Solver ss1 ss2 ss3 ss4 8 bit 16 bit 32 bit 8 bit 16 bit 32 bit
clasp-1.1.1 123.20 105.72 578.37 12355.16 0.46 0.48 15.81 0.31 0.37 8.67
smodels-2.32 123.25 266.17 6880.87 - 0.18 11.33 - 0.20 4.75 -
smodels-ie-1.0.0 123.21 281.60 1983.94 - 0.20 11.08 - 0.21 4.79 -
sup-0.2 123.22 103.46 768.36 - 0.40 3.38 - 0.15 0.14 8.70
Atoms 853 1411 2098 2941 904 2212 6940 1030 1526 2518
Rules 42740 118779 238212 410902 1622 4870 17122 3591 6591 12583

Table 1. Timings (in sec) for TOAST search and verify tests for SPARC V8

inclusion of techniques from SAT solvers, notably clause learning. This demonstrates
one of the advantages of ASP; that improvements in solver performance directly benefit
applications using them, and that more advanced solvers can be ‘plugged-in’ with min-
imal integration needed. Our approach incorporates the concept of a full verification
rather than a plausibility test as is done in other systems, taking the need for a human
out of the operation.

Making use of these advances in solver technology and the flexibility of ASP (es-
pecially with buildMultiple), it is hoped that TOAST can be built into a competitive
superoptimising system. Key application areas are seen in improving the quality of
templates and peephole optimisers used in both conventional and JIT compilers.

References

1. Alfred Aho, Monica Lam, Ravi Sethi, and Jeffrey Ullman. Compilers: Principles, Techniques
and Tools. Addison Wesley, 2nd edition, 2006.

2. Sorav Bansal and Alex Aiken. Automatic Generation of Peephole Superoptimizers. In Pro-
ceedings of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XII), pages 394–403. ACM Press, 2006.

3. Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

4. Martin Brain, Tom Crick, Marina De Vos, and John Fitch. TOAST: Applying Answer Set Pro-
gramming to Superoptimisation. In ICLP 2006, volume 4079 of Lecture Notes in Computer
Science, pages 270–284. Springer, 2006.

5. Torbjörn Granlund and Richard Kenner. Eliminating Branches using a Superoptimizer and the
GNU C Compiler. In Proceedings of the ACM SIGPLAN 1992 Conference on Programming
Language Design and Implementation (PLDI’92), pages 341–352. ACM Press, 1992.

6. Mary Hall, David Padua, and Keshav Pingali. Compiler Research: the Next 50 Years. Com-
munications of the ACM, 52(2):60–67, 2009.

7. Rajeev Joshi, Greg Nelson, and Keith Randall. Denali: A Goal-Directed Superoptimizer. In
Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation (PLDI’02), pages 304–314. ACM Press, 2002.

8. Henry Massalin. Superoptimizer: A Look at the Smallest Program. In Proceedings of the 2nd
International Conference on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS II), pages 122–126. IEEE Computer Society Press, 1987.

9. SPARC International, Inc. The SPARC Architecture Manual, Version 8, 1992. Revision
SAV080SI9308.

