No Cover Image

Journal article 963 views 164 downloads

Gradient Estimates on Dirichlet and Neumann Eigenfunctions

Marc Arnaudon, Anton Thalmaier, Feng-yu Wang

International Mathematics Research Notices

Swansea University Author: Feng-yu Wang

Check full text

DOI (Published version): 10.1093/imrn/rny208

Abstract

By methods of stochastic analysis on Riemannian manifolds, we derive explicit constants $c_1(D)$ and $c_2(D)$ for a $d$-dimensional compact Riemannian manifold $D$ with boundary such that $$c_1(D)\ss\lambda \|\phi\|_\infty\le \|\nabla \phi\|_\infty \le c_2(D) \sqrt\lambda\|\phi\|_\infty$$ holds for...

Full description

Published in: International Mathematics Research Notices
ISSN: 1073-7928 1687-0247
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa43217
Abstract: By methods of stochastic analysis on Riemannian manifolds, we derive explicit constants $c_1(D)$ and $c_2(D)$ for a $d$-dimensional compact Riemannian manifold $D$ with boundary such that $$c_1(D)\ss\lambda \|\phi\|_\infty\le \|\nabla \phi\|_\infty \le c_2(D) \sqrt\lambda\|\phi\|_\infty$$ holds for any Dirichlet eigenfunction $\phi$ of $-\DD$ with eigenvalue $\lambda$. In particular, when $D$ is convex with non-negative Ricci curvature, the estimate holds for $$c_1(D)= \frac 1{de},\quad c_2(D)=\sqrt{e}\left(\frac{\sqrt{2}}{\sqrt{\pi}}+\frac{\sqrt{\pi}}{4\sqrt{2}}\right).$$ Corresponding two-sided gradient estimates for Neumann eigenfunctions are derived in the second part of the paper.
College: Faculty of Science and Engineering