E-Thesis 494 views 317 downloads
Hot mill process parameters impacting on hot mill tertiary scale formation. / Jonathan Ian Kennedy
Swansea University Author: Jonathan Ian Kennedy
-
PDF | E-Thesis
Download (4.75MB)
Abstract
For high end steel applications surface quality is paramount to deliver a suitable product. A major cause of surface quality issues is from the formation of tertiary scale. The scale formation depends on numerous factors such as thermo-mechanical processing routes, chemical composition, thickness an...
Published: |
2012
|
---|---|
Institution: | Swansea University |
Degree level: | Doctoral |
Degree name: | EngD |
URI: | https://cronfa.swan.ac.uk/Record/cronfa42262 |
first_indexed |
2018-08-02T18:54:17Z |
---|---|
last_indexed |
2018-08-03T10:09:41Z |
id |
cronfa42262 |
recordtype |
RisThesis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-08-02T16:24:28.6045852</datestamp><bib-version>v2</bib-version><id>42262</id><entry>2018-08-02</entry><title>Hot mill process parameters impacting on hot mill tertiary scale formation.</title><swanseaauthors><author><sid>7235918655aa333e26b1697eae14bd01</sid><ORCID>NULL</ORCID><firstname>Jonathan Ian</firstname><surname>Kennedy</surname><name>Jonathan Ian Kennedy</name><active>true</active><ethesisStudent>true</ethesisStudent></author></swanseaauthors><date>2018-08-02</date><abstract>For high end steel applications surface quality is paramount to deliver a suitable product. A major cause of surface quality issues is from the formation of tertiary scale. The scale formation depends on numerous factors such as thermo-mechanical processing routes, chemical composition, thickness and rolls used. This thesis utilises a collection of data mining techniques to better understand the influence of Hot Mill process parameters on scale formation at Port Talbot Hot Strip Mill in South Wales. The dataset to which these data mining techniques were applied was carefully chosen to reduce process variation. There are several main factors that were considered to minimise this variability including time period, grade and gauge investigated. The following data mining techniques were chosen to investigate this dataset: Partial Least Squares (PLS); Logit Analysis; Principle Component Analysis (PCA); Multinomial Logistical Regression (MLR); Adaptive Neuro Inference Fuzzy Systems (ANFIS). The analysis indicated that the most significant variable for scale formation is the temperature entering the finishing mill. If the temperature is controlled on entering the finishing mill scale will not be formed. Values greater than 1070 &deg;C for the average Roughing Mill and above 1050 &deg;C for the average Crop Shear temperature are considered high, with values greater than this increasing the chance of scale formation. As the temperature increases more scale suppression measures are required to limit scale formation, with high temperatures more likely to generate a greater amount of scale even with fully functional scale suppression systems in place. Chemistry is also a significant factor in scale formation, with Phosphorus being the most significant of the chemistry variables. It is recommended that the chemistry specification for Phosphorus be limited to a maximum value of 0.015 % rather than 0.020 % to limit scale formation. Slabs with higher values should be treated with particular care when being processed through the Hot Mill to limit scale formation.</abstract><type>E-Thesis</type><journal/><journalNumber></journalNumber><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><issnPrint/><issnElectronic/><keywords>Materials science.</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2012</publishedYear><publishedDate>2012-12-31</publishedDate><doi/><url/><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><degreelevel>Doctoral</degreelevel><degreename>EngD</degreename><apcterm/><lastEdited>2018-08-02T16:24:28.6045852</lastEdited><Created>2018-08-02T16:24:28.6045852</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Jonathan Ian</firstname><surname>Kennedy</surname><orcid>NULL</orcid><order>1</order></author></authors><documents><document><filename>0042262-02082018162440.pdf</filename><originalFilename>10797970.pdf</originalFilename><uploaded>2018-08-02T16:24:40.6800000</uploaded><type>Output</type><contentLength>4902464</contentLength><contentType>application/pdf</contentType><version>E-Thesis</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-08-02T16:24:40.6800000</embargoDate><copyrightCorrect>false</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2018-08-02T16:24:28.6045852 v2 42262 2018-08-02 Hot mill process parameters impacting on hot mill tertiary scale formation. 7235918655aa333e26b1697eae14bd01 NULL Jonathan Ian Kennedy Jonathan Ian Kennedy true true 2018-08-02 For high end steel applications surface quality is paramount to deliver a suitable product. A major cause of surface quality issues is from the formation of tertiary scale. The scale formation depends on numerous factors such as thermo-mechanical processing routes, chemical composition, thickness and rolls used. This thesis utilises a collection of data mining techniques to better understand the influence of Hot Mill process parameters on scale formation at Port Talbot Hot Strip Mill in South Wales. The dataset to which these data mining techniques were applied was carefully chosen to reduce process variation. There are several main factors that were considered to minimise this variability including time period, grade and gauge investigated. The following data mining techniques were chosen to investigate this dataset: Partial Least Squares (PLS); Logit Analysis; Principle Component Analysis (PCA); Multinomial Logistical Regression (MLR); Adaptive Neuro Inference Fuzzy Systems (ANFIS). The analysis indicated that the most significant variable for scale formation is the temperature entering the finishing mill. If the temperature is controlled on entering the finishing mill scale will not be formed. Values greater than 1070 °C for the average Roughing Mill and above 1050 °C for the average Crop Shear temperature are considered high, with values greater than this increasing the chance of scale formation. As the temperature increases more scale suppression measures are required to limit scale formation, with high temperatures more likely to generate a greater amount of scale even with fully functional scale suppression systems in place. Chemistry is also a significant factor in scale formation, with Phosphorus being the most significant of the chemistry variables. It is recommended that the chemistry specification for Phosphorus be limited to a maximum value of 0.015 % rather than 0.020 % to limit scale formation. Slabs with higher values should be treated with particular care when being processed through the Hot Mill to limit scale formation. E-Thesis Materials science. 31 12 2012 2012-12-31 COLLEGE NANME Engineering COLLEGE CODE Swansea University Doctoral EngD 2018-08-02T16:24:28.6045852 2018-08-02T16:24:28.6045852 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Jonathan Ian Kennedy NULL 1 0042262-02082018162440.pdf 10797970.pdf 2018-08-02T16:24:40.6800000 Output 4902464 application/pdf E-Thesis true 2018-08-02T16:24:40.6800000 false |
title |
Hot mill process parameters impacting on hot mill tertiary scale formation. |
spellingShingle |
Hot mill process parameters impacting on hot mill tertiary scale formation. Jonathan Ian Kennedy |
title_short |
Hot mill process parameters impacting on hot mill tertiary scale formation. |
title_full |
Hot mill process parameters impacting on hot mill tertiary scale formation. |
title_fullStr |
Hot mill process parameters impacting on hot mill tertiary scale formation. |
title_full_unstemmed |
Hot mill process parameters impacting on hot mill tertiary scale formation. |
title_sort |
Hot mill process parameters impacting on hot mill tertiary scale formation. |
author_id_str_mv |
7235918655aa333e26b1697eae14bd01 |
author_id_fullname_str_mv |
7235918655aa333e26b1697eae14bd01_***_Jonathan Ian Kennedy |
author |
Jonathan Ian Kennedy |
author2 |
Jonathan Ian Kennedy |
format |
E-Thesis |
publishDate |
2012 |
institution |
Swansea University |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised |
document_store_str |
1 |
active_str |
0 |
description |
For high end steel applications surface quality is paramount to deliver a suitable product. A major cause of surface quality issues is from the formation of tertiary scale. The scale formation depends on numerous factors such as thermo-mechanical processing routes, chemical composition, thickness and rolls used. This thesis utilises a collection of data mining techniques to better understand the influence of Hot Mill process parameters on scale formation at Port Talbot Hot Strip Mill in South Wales. The dataset to which these data mining techniques were applied was carefully chosen to reduce process variation. There are several main factors that were considered to minimise this variability including time period, grade and gauge investigated. The following data mining techniques were chosen to investigate this dataset: Partial Least Squares (PLS); Logit Analysis; Principle Component Analysis (PCA); Multinomial Logistical Regression (MLR); Adaptive Neuro Inference Fuzzy Systems (ANFIS). The analysis indicated that the most significant variable for scale formation is the temperature entering the finishing mill. If the temperature is controlled on entering the finishing mill scale will not be formed. Values greater than 1070 °C for the average Roughing Mill and above 1050 °C for the average Crop Shear temperature are considered high, with values greater than this increasing the chance of scale formation. As the temperature increases more scale suppression measures are required to limit scale formation, with high temperatures more likely to generate a greater amount of scale even with fully functional scale suppression systems in place. Chemistry is also a significant factor in scale formation, with Phosphorus being the most significant of the chemistry variables. It is recommended that the chemistry specification for Phosphorus be limited to a maximum value of 0.015 % rather than 0.020 % to limit scale formation. Slabs with higher values should be treated with particular care when being processed through the Hot Mill to limit scale formation. |
published_date |
2012-12-31T08:38:05Z |
_version_ |
1830268735373443072 |
score |
11.0597 |