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THESIS SUMMARY

Candidate's Surname: Kennedy 

Candidate's Forenames: Jonathan Ian

Candidate for the Degree of: Engineering Doctorate in Steel Technology

Full title of thesis: Hot Mill Process Parameters Impacting on Hot Mill Tertiary Scale 

Formation

Summary:

For high end steel applications surface quality is paramount to deliver a suitable product. A 

major cause of surface quality issues is from the formation o f tertiary scale. The scale 

formation depends on numerous factors such as thermo-mechanical processing routes, 

chemical composition, thickness and rolls used. This thesis utilises a collection of data 

mining techniques to better understand the influence o f Hot Mill process parameters on scale 

formation at Port Talbot Hot Strip Mill in South Wales.

The dataset to which these data mining techniques were applied was carefully chosen to 

reduce process variation. There are several main factors that were considered to minimise this 

variability including time period, grade and gauge investigated. The following data mining 

techniques were chosen to investigate this dataset:

• Partial Least Squares (PLS)

• Logit Analysis

• Principle Component Analysis (PCA)

• Multinomial Logistical Regression (MLR)

• Adaptive Neuro Inference Fuzzy Systems (ANFIS)

The analysis indicated that the most significant variable for scale formation is the temperature 

entering the finishing mill. If the temperature is controlled on entering the finishing mill scale 

will not be formed. Values greater than 1070 °C for the average Roughing Mill and above 

1050 °C for the average Crop Shear temperature are considered high, with values greater than 

this increasing the chance o f scale formation. As the temperature increases more scale 

suppression measures are required to limit scale formation, with high temperatures more



likely to generate a greater amount of scale even with fully functional scale suppression 

systems in place.

Chemistry is also a significant factor in scale formation, with Phosphorus being the most 

significant o f the chemistry variables. It is recommended that the chemistry specification for 

Phosphorus be limited to a maximum value of 0.015 % rather than 0.020 % to limit scale 

formation. Slabs with higher values should be treated with particular care when being 

processed through the Hot Mill to limit scale formation.



Acknowledgments

This work would not have been possible if  not for the assistance of a number o f key people 

and I would like to take a moment to acknowledge their contribution to this study.

First I would like to acknowledge the invaluable assistance of Dr Fiona Robinson. Her depth 

o f knowledge and contacts proved invaluable in running a successful project.

Dr Mark Evans for his advice and guidance on writing papers and interpreting data.

Mr Sid Petitte, whose decades o f experience in the steel industry were invaluable to 

understanding which process parameters were important in influencing scale formation in 

Port Talbot Hot Mill.

Dr John Albiston for giving me advice on suitable software available within Tata steel for the 

project.

Dr Paul Thomas, for taking over the industrial supervisor position in the final year and aiding 

me in structuring my thesis.

Dr James Sullivan for his support in the early stages of the project.

I would also like to thank from the bottom of my heart Natasha Marshall, for being so 

supportive through the closing months of the write up. Also, for being the best person I know.

This research was funded by a grant from the Physical and Sciences Research Council 

(EPSRC) and TATA Steel Strip Products, UK (TSSP-UK).

And last (but not least) my family who have offered moral support and advice throughout the 

doctorate.



List of Publications

The following is a list o f publications I have written or been involved in during my doctorate.

Kennedy, J., Evans, M., Robinson, F., Identification for control of the process parameters 

influencing tertiary scale formation at the hot strip mill using a binary choice model, Journal 

o f Materials Processing Technology, Volume 212, Issue 7, July 2012, Pages 1622-1630

Evans, M., Kennedy, J., Thomas, P., Process parameters influencing tertiary scale formation 

at a hot strip mill using a multinomial logit model, Journal o f Manufacturing Science and 

Engineering

Evans, M., Kennedy, J., Thomas, P., Non-linear partial least squares and its application to 

minimising scale formation at a steel hot mill, Materials Science and Technology, Volume 

28, Number 12, December 2012, pp. 1513-1522(10)

Bright, G., Kennedy, J., Robinson, F., Evans, M., Whittaker, M.T., Sullivan, J., Gao 

Y.,Variability in the mechanical properties and processing conditions o f a High Strength Low 

Alloy steel, Procedia Engineering, Volume 10, 2011, Pages 106-111

Sullivan, J., Weirman, C., Kennedy, J., Penney, D., Influence o f steel gauge on the 

microstructure and corrosion performance of zinc alloy coated steels, Corrosion Science, 

Volume 52, Issue 5, May 2010, Pages 1853-1862



Contents

1 Chapter 1. Literature Review 2
1.1 Processes 2
1.1.1 Hot Mill Overview 2
1.1.2 Slab Yard 3
1.1.2.1 Slab Defects 3
1.1.2.2 Round 4
1.1.3 Furnace 4
1.1.4 Scale Breaker and Reversing Rougher Mill 5
1.1.5 Coil Box 5
1.1.6 Finishing Mill 6
1.1.7 Finishing Mill Entry 6
1.1.7.1 Crop Shear 6
1.1.7.2 Roll Coolant 7
1.1.7.3 Finishing Scale Breaker (FSB) 7
1.1.7.4 Water Containment 10
1.1.7.5 F5 Pre-Sprays 11
1.1.7.6 Finishing Mill Scrubbers and Edge Sprays 12
1.1.7.7 Interstand Cooling 13
1.1.8 Parsytec 13
1.1.8.1 Detection 14
1.1.8.2 Classification 14
1.1.8.3 Action 16
1.1.9 Run Out Table (ROT) and Coiling 16
1.1.10 Conclusions for Process 16
1.2 Scale 17
1.2.1 What is iron oxide made of? 17
1.2.2 Influences on Scale 19
1.2.3 Mill layout 20
1.2.4 Temperature 20
1.2.5 Dimensions 21
1.2.6 Time 21
1.2.7 Chemistry 21
1.2.7.1 Silicon 22
1.2.7.2 Phosphorus 22
1.2.8 Descaler sprays 23
1.2.9 Rolling 23
1.2.10 Downstream Scale 24
1.2.11 Conclusions to Scale section 25
1.2.12 References 25
1.3 Data Mining 27
1.3.1 Directed and Undirected Techniques 28
1.3.2 Cluster Detection 29
1.3.3 Binomial Regression 29
1.3.4 Classification and Regression Trees (CART) 29
1.3.4.1 Pruning 30
1.3.5 Artificial Neural Networks (ANN) 30
1.3.6 Multivariate Adaptive Regression Splines (MARS) 31



1.3.6.1 Hinge Function 31
1.3.7 Principle Component Analysis (PCA) 32
1.3.8 Partial Least Squares (PLS) 32
1.3.9 Genetic Algorithms 32
1.3.10 Multinomial Logistical Regression (MLR) 32
1.3.11 Adaptive Neural Fuzzy Inference System (ANFIS) 33
1.3.12 Conclusions to Data Mining 33

2 Chapter 2. Aims of Research Project 34

3 Chapter 3. Experimental Techniques 35
3.1 Data Collection 35
3.1.1 Considerations 35
3.2 Statistical Methods 38
3.2.1 Binary Statistical methodology 39

4 Chapter 4. Identification, for control, of the process parameters 
influencing tertiary scale formation at the hot strip mill using a
binary choice model 40

4.1 Principal component analysis 40
4.2 Binary choice models 41
4.2.1 A generalised framework 41
4.3 Parameter estimation 46
4.4 Model identification 46
4.5 Results and evaluation 47
4.5.1 Principal component testing procedure 47
4.5.2 Distribution analysis 51
4.6 Logit model results 52
4.7 Logit Conclusions 57
4.8 References 57

5 Chapter 5. A Partial Least Squares Generalized Linear
Regression Algorithm 59

5.1 The Generalised Linear Model 59
5.2 Partial Least Squares within a Generalised Linear Model 61
5.2.1 Determination o f the first PLS component //,: 61
5.2.2 Determination o f the second PLS component t2i: 62
5.2.3 Determination o f the other PLS components: 62
5.3 PLS Results and discussion 63
5.3.1 The PLS Components and the PLS Logit Model 63
5.4 Analysis and Interpretation 68
5.5 PLS Conclusions 73
5.6 References 74

6 Chapter 6. Process parameters influencing tertiary scale
formation at a hot strip mill using a multinomial logit Model 75

6.1 Introduction 75
6.2 MLR data classification 75

viii ]



6.3 Principle Component Analysis 76
6.4 MLR model 77
6.5 Estimating a Multinominal Logit Model 78
6.6 MLR Results and Discussion 78
6.6.1 Principle component testing procedure 78
6.6.2 Multinominal logistic model results 81
6.7 MLR Conclusions 89
6.8 References 90

7 Chapter 7. Development of a multi-layer ANFIS model for the
prediction of tertiary scale formation 91

7.1 ANFIS model 91
7.2 ANFIS Results and Discussion 96
7.3 ANFIS Conclusions 101
7.4 References 102

8 Chapter 8. General Discussion 103
8.1 Binary vs. Multinomial vs. Continuous 103
8.1.1 Binary 103
8.1.2 Multinomial 104
8.1.3 Continuous 104
8.2 Model Comparisons 105
8.3 Model Use 107
8.4 Scale Formation 107

9 Chapter 9. General Conclusions 109

10 Chapter 10. Recommendations 111



List of Tables

Table 1. Slab Specifications (Dimensions).........................................................................3

Table 2. Slab Specifications (Bending)...............................................................................4

Table 3. Parsytec Recognition Rates................................................................................. 15

Table 4. Typical mechanical properties for scale phases (Bolt (2003))........................19

Table 5. Process Variables and their Sample Means and Standard Deviations.......... 37

Table 6 . Correlation matrix for the temperature process variables............................... 48

Table 7. Principle component results for the temperature process variables...............50

Table 8 . Logit model results............................................................................................... 53

Table 9. Quasi-elasticities................................................................................................... 54

Table 10. Estimated values for the pij weights for all alloying elements...................63

Table 11. Estimated values for the Py weights for various temperatures.................... 64

Table 12. Examples o f using the PLS logit model for process control.........................72

Table 13. Classification of splits for the MLR model.....................................................76

Table 14. Variables used in the construction of the principle components................. 79

Table 15. Principal component results for the temperature process variables............ 80

Table 16. The estimated values for the parameters in Eq. (6.4).................................... 82

Table 17. Table o f actual and predicted values for scale count..................................... 83

Table 18. Elasticities for each of the statistically significant process variables..........85

Table 19. Maximum temperature settings to achieve a 10% or less chance of very low scale

forming...................................................................................................................................89

Table 20. Process Variables and their Sample Means and Standard Deviations 91

Table 21. Table showing the sum of the square errors for the different variables used.96 

Table 22. Table showing the regression parameters for Var 1,2,3 . Bold numbers represent the

most significant parameters for that function................................................................. 1 0 0

Table 23. Table showing the calculated k and a values at Vari,2 ,3 ............................ 100

Table 24. Table showing selected coils at different scale counts................................101

Table 25. Lead Monitor for Tinplate grades...................................................................110



List of Figures

Figure 1. Overview o f the Hot Mill..................................................................................... 2

Figure 2. Finishing Mill Entry.............................................................................................. 6

Figure 3. Lead Test...............................................................................................................10

Figure 4. Composition o f scale...........................................................................................17

Figure 5. Scale as observed from the galvanising line....................................................25

Figure 6. The maximised log likelihood obtained at different values for p and q...... 52

Figure 7. Probability of scale formation with variations in the significant process variables.

................................................................................................................................................55

Figure 8. Predicted Probabilities of Scale as a Function of the PLS Components.....69

Figure 9. Cross Plot o f the PLS Components...................................................................70

Figure 10. Calculated Elasties for Each Process Variable..............................................71

Figure 11. Cumulative Frequency Plot for the Average Rougher Mill Exit Temperature. 72 

Figure 12. Cumulative Frequency Plot for the Average Crop Shear Temperature. ...73 

Figure 13. Probability of scale formation with variations in some o f the process variables. 87 

Figure 14. A typical binary regression tree with two inputs (xi and X2) and one output y. 92 

Figure 15. ANFIS architecture corresponding to the representation shown in Figure 14.

Values for w given by Eq. (7.3)......................................................................................... 95

Figure 16. Observed tertiary scale versus predicted tertiary scale for Vari (AvgRM).97 

Figure 17. Observed tertiary scale versus predicted tertiary scale for V a r^  (AvgRM, PerP). 

................................................................................................................................................98

Figure 18. Observed tertiary scale versus predicted tertiary scale for V a r i^  (AvgRM, PerP, 

AvgCS)...................................................................................................................................99



C hapter 1. L iterature Review

1.1 Processes

This section will introduce the different processes that occur in the Hot Mill and will 

concentrate on the areas that have the greatest influence over scale formation.

1.1.1 Hot Mill Overview

The steel works in Port Talbot is a fully integrated steel works, producing steel from raw 

materials with limited scrap additions. Steel is continuously cast at Port Talbot using a 

continuous caster.

After being processed through the continuous caster the material is transported to the Hot 

Mill (see figure 1) for further processing. The purpose of the Hot Mill is to reduce the gauge 

of the slab to form a hot rolled coil that can either be dispatched directly to a customer or 

proceed for further processing. The aspects of the processing that have an effect on upstream 

surface quality are investigated. The Hot Mill is split into several sections including;

• Slab Yard

• Reheat furnace

• Scale breaker

• Reversing roughing mill

• Coil box

• Crop shear

• Finishing mill

• Run Out Table

• Coiler

R e v e r s i n g  
R o u g h i n g  Mill

C r o p
S h e a r s F in i s h in g  MillR e h e a t

F u r n a c e R u n o u t  Table

Coil B ox

,#AAAAAAAOQOQC ̂ OOA o r B

Figure 1. Overview of the Hot Mill.
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1.1.2 Slab Yard

There are several purposes of the slab yard, including the following;

• To receive slabs from the continuous caster

• To store slabs before they are processed

• To provide the slabs in the correct order for the Reheat Furnace

• To identify and rectify quality issues

When a slab arrives in the slab yard one of two things will happen;

1. If the slab is part of a hot connect round it will be sent straight to the Hot Mill for 

processing. Hot connect slabs have several advantages including;

a. Saving money on reheating because they start at a higher temperature when 

entering the Furnace.

b. Reduce time between placed order and delivery.

c. Saving space. Under normal conditions a slab would sit in the slab yard for 

several days to cool down before being processed for safety reasons.

2. Most slabs will be left to cool for several days so they can be checked and put into a 

round for processing in the Hot Mill.

1.1.2.1 Slab Defects

It is vital that the slabs dimensions are tightly controlled before entering the Hot Mill (see 

table 1). The Port Talbot reheat furnace is a walking beam furnace. This means that there are 

a number of stationary beams to support the slab and a number of powered beams to move 

the slab through the furnace. If the processed slabs are too long for the Hot Mill it can 

damage the Furnace and if it is too short it could get stuck in the Furnace. The dimensions are 

dependent on which mill the slab is going to be rolled at. Slabs that are too short (< 7 m) to 

be processed at Port Talbot can be processed via Llanwem Hot Mill rather than be scrapped.

Table 1. Slab Specifications (Dimensions).

Length (m) Width (mm) Thickness (mm)

Port Talbot

ooT-̂1O

6 4 0 -  1875 1 9 0 -2 5 4

Llanwem 5 .5 -8 .7 5 7 0 0 -  1550 1 9 0 -2 5 4



The shape o f the bar is also very important, because poor shape could lead to difficulties in 

charging and reheating in the Furnaces. Or in the worst case the slabs are scrapped to protect 

the Furnace and Hot Mill.

Table 2. Slab Specifications (Bending).

Max. bend off Max. bend off straight Max. bend off straight

horizontal (mm) (single width) (mm) (slit width) (mm)

Port Talbot 70 25 50

Llanwem 70 25 50

To stop slabs from bending during cooling, stacks should be arranged so that the longest slabs 

are on the bottom or give a maximum overhang of 1 metre. If the slabs deviate by more than 

the values in table 2 then the slab will be placed between 2 hot slabs. This is undertaken to 

bend the slab back to the correct shape. If this is not possible then the slab can be cut back 

until the bend is below 70 mm out o f flatness. However, care should be taken to make sure 

that slabs do not drop below their minimum specification for processing (see table 1).

1.1.2.2 Round

The round is the order to which the slab will be processed through the Hot Mill between 

planned roll changes. Rounds attempt to maximize the surface and dimensional quality whilst 

reducing the number o f work roll changes in the rolling mills to maximize profit.

The slabs in the round have rules governing how they can be positioned in the round 

depending on width, gauge and grade considerations. The slabs planned for the round will be 

checked for quality issues prior to being ordered and sent to the Furnace.

1.1,3 Furnace

After leaving the slab yard, slabs are placed on the slab charging roller tables and will be 

given final visual checks o f their dimensions prior to entering the Furnace. The slabs are



moved to the charge end of the Furnace and enter the Furnace when appropriate space is 

available in Furnace A or B.

The Furnaces are long insulated rectangular metal boxes, with burners to control temperature. 

The slabs are moved through the Furnace using the walking beam. The Furnace contains a 

mixture o f fixed beams (to hold the slab) and walking beams (to move the slab). The walking 

beams are lifted using hydraulic cylinders and rollers. The most important aspect of slab 

Furnace movement is that the slabs are moved in a controlled way. If control over the slab is 

lost then slabs could interfere with each other, damage the Furnace wall, or in extreme cases 

get stuck in the Furnace.

Slabs are heated to the required temperature (1180 -  1240 °C) depending on the dimensions 

and chemistry. The temperature of the slab is not measured in the Furnace due to the thick 

layer o f scale preventing accurate measurements from being taken. Therefore the Furnace 

temperature is back calculated from the Roughing Mill after the Furnace scale has been 

removed and an accurate reading can be taken.

1.1.4 Scale Breaker and Reversing Rougher Mill

After leaving the Reheat Furnace the slab proceeds into the scale breaker which will remove 

the scale created in the Furnace. Without a scale breaker there would be a dramatic increase 

in the number of primary scale defects on the strip, and would also impact on surface quality 

by damaging rolls.

The Roughing Mill reduces the gauge of the incoming slab to between 35 mm and 45 mm, 

which is known as a transfer bar. The transfer bar is spread or squeezed by the edger to the 

required width o f the coil and some of the scale formed in the Reheat Furnaces is removed. 

The Hot Mill in Port Talbot has a Reversing Rougher hence several passes are necessary to 

achieve the required transfer bar thickness.

1.1.5 Coil Box

After the Reversing Rougher Mill the slab is then held at the coil box, the purpose o f which is 

to reduce the size of the mill and to increase the temperature o f the transfer bar before it



enters the Finishing Mill. When the coiling is complete the outer lap o f the coil is fed into the 

Crop Shears. After the coil box the top/bottom and head/tail ends are switched.

1.1.6 Finishing Mill

The purpose o f the Finishing Mill (FM) is to reduce the dimensions o f the transfer bar to the 

thickness that is required by the customer. This is achieved by passing the transfer bar 

through a series o f close-coupled mill stands that have a reducing roll gap.

1.1.7  Finishing Mill Entry

The Finishing Mill is a vital area o f the Hot Mill when considering tertiary scale formation 

(also called D-type scale). An overview of the Finishing Mill entry is in figure 2. The purpose 

o f the entire scale suppression system in the front section of the Finishing Mill is to condition 

the transfer bar so that scale is not formed.

Finishing Mill 
Interstand coolingCoil Box

Crop
Shear

Figure 2. Finishing Mill Entry.

1.1.7.1 Crop Shear

After leaving the coil box the transfer bar enters the Crop Shear. The Crop Shear is a large 

shear spanning the width of the transfer bar, which will crop the end o f the bar to leave a 

straight edge. The purpose o f the Crop Shear is to ensure that the transfer bar is fed correctly 

into the Finishing Mill by cutting off the end o f the bar so a flat edge is left.
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1.1.7.2 Roll Coolant

Roll coolant is added to the rolls in the Finishing Mill, for several important reasons 

including;

1. To protect the work rolls from thermal failure due to the high temperatures and loads 

associated with rolling.

2. To control the thermal expansion (thermal crown) o f the work rolls in a parabolic 

manner so that a parabolic strip crown and flatness are obtained.

3. To minimise the surface degradation o f the work rolls. This is achieved by 

maintaining a stable protective oxide layer on the surface of the rolls in the early 

stands to minimise roll wear.

The incorrect use and control of the roll coolant can result in a number of failure modes 

including;

• Too much or too little water affecting roll gap profile - poor interstand shape leading 

to manual bending interventions - target exit shape and/or crown/profile not obtained.

• Uneven application of cooling water across the roll barrel length -  asymmetric shape 

or a ridge on the profile.

• Inadequate volume of roll coolant - surface temperature o f the roll gets too hot during 

rolling generating scale on the roll which can imprint on the strip.

1.1.7.3 Finishing Scale Breaker (FSB)

After the Crop Shears the transfer bar passes through the conditioning systems of the 

Finishing Scale Breakers (FSB). The FSB are used to remove secondary scale formed after 

the Roughing Mill and condition the transfer bar to prevent tertiary scale formation. This is 

achieved by using high pressure water from the descaling system. The FSB consists of the 

following:

• Two top and two bottom descaling headers, referred to as A and B legs.

• A descaling hood

o Collects and channels rebound water away from the bar.

• FSB top and bottom pinch roll - situated at the entry to the FSB



o These provide traction through the FSB. The top and bottom rolls need to 

make good contact with the transfer bar to prevent water from running back to 

the Crop Shear.

■ Reducing temperature at the Crop Shear will increase the resistance to 

shearing and increase wear on the Crop Shear.

• Damming roll - situated at the exit of the FSB

o The top roll is fitted with a compressed air supply thus provide a downward 

force to ensure good contact with the strip. This prevents excess water from 

pooling on the top surface in the F5 guide area.

• A centrally located under bar driven roller -  maintains the pass-line through the FSB.

• External deflector

o Situated between the pinch roll and the first descaling header. This is a series 

of narrow steel fingers attached to a horizontal pole again preventing excess 

water escaping.

• A set o f carry-over fingers.

The two pairs o f headers (top and bottom), are all equipped with nozzles at approximately 

100 mm apart. The second pair is offset by approximately 50 mm relative to the first, this 

evens out the cooling effects and to give full width descaling coverage should a nozzle in one 

of the headers become blocked. Each header is split into a central zone (approximately 1400 

mm wide); this is used for the majority of material processed. For material with a width 

greater than 1400 mm a smaller outer section of the headers is used (approximately 300 mm 

at each end). Water reserves need to be carefully managed for high width material to avoid 

significant loss of pressure and flow.

For full width coverage, it is important that the nozzles are aligned correctly to each other. 

The correct descaling coverage is only achieved when the nozzles are aligned correctly 

allowing full overlap o f sprays. This type o f installation is in danger of not providing full 

descaling and therefore increasing the risk of defects such as scale.

To ensure that conditioning is achieved each nozzle is set at an angle to the rolling direction. 

This is done to ensure that the spray pattern from one nozzle does not interfere with the



adjacent nozzle. The nozzle angle is also important because some angles are more likely to 

suffer from clogging o f the nozzle.

It should be noted that if  there is excessive undulation o f the transfer bar as it passes through 

the FSB, then the change in relative heights/distances will give a different descaling footprint. 

Incomplete descaling coverage is possible on the top surface as the standoff distance 

decreases. On the bottom surface, the standoff distance increases and more nozzle overlap 

results. This is another reason why the headers are offset by 50 mm.

As the nozzles are worn down through use the flow rate will increase, this will produce the 

following effects;

• The descaling impact pressure will drop.

o This will reduce the amount o f scale removal.

• The increased flow rates will cause additional cooling.

o Additional cooling could aid in conditioning o f the transfer bar but can cause 

other defects such as transverse cuts plus possibly low finishing temperatures.

• The increased overlap o f the water jets will result in additional “double” cooling in 

the overlap area which can be seen as dark stripes on the surface exiting the FSB. This 

is detrimental for transverse temperature distribution.

In order to control and minimize the effects of nozzle wear, maximum flow limits are set for 

initiating nozzle changes.

During maintenance, a lead test (see figure 3) is undertaken as a check for blocked or 

misaligned nozzles and also to ensure that the carryover fingers do not interfere with the 

descaling spray pattern. The lead test is a board covered on both sides with lead at the same 

thickness as the transfer bar (45 mm) spanning the full width of the FSB. The FSB is turned 

on and then the lead blank is examined to identify misaligned or blocked nozzles. The test 

should show that the sprays overlap with each other so that the entire width is covered.



Figure 3. Lead Test, To test the effectiveness of the sprays a wooden plank covered in 

iead is inserted and the sprays are activated. The lines im printed on the lead are the 

impact of the sprays. It is desirable to observ e an overlapping pattern.

1.1.7.4 Water Containment

The FSB headers have various pieces of equipment on either side of them preventing the 

escape of excess descaling water. The presence of excess water pooling on the transfer bar in 

this area can cause:

• An overall loss of temperature.

• Localised temperature variation resulting in gauge spikes.

o Different temperatures will affect how the transfer bar will react when it enters 

the Finishing Mill and give different gauges.

• Increases the risk of transverse cuts.

o Transverse cuts are caused by localized areas of cooling. These areas will have 

different mechanical properties than the surrounding area and during further



processing will damage the surface which is unsuitable for many applications 

and can split the coil.

The purpose of the FSB hood is not only to cover the area but to stop descaling rebound 

water from falling onto the strip which will impede the impact of the sprays. To ensure 

descaling occurs water is contained within the hood. The hood contains channels to collect 

the rebound water and then allow it to flow away at the operator and drive side ends of the 

hood. During the rewinding of a cobble, the hood should be raised to prevent internal 

damage.

1.1.7.5 F5 Pre-Sprays

After the FSB there are the F5 pre-sprays (see figure 2), the purpose of these are to control 

the temperature o f the transfer bar to minimize tertiary scale formation. The conditioning of 

the transfer bar by the F5 pre-sprays can influence a number of failures including the 

following;

• Excess water applied to the strip. This can result in the following;

o Incorrect gauge.

■ Excess water can change the cooling pattern o f the steel which will 

influence the steels reaction to the Finishing Mill rolls leading to an 

incorrect gauge.

o Low Finishing Mill exit temperature.

■ Due to increased cooling mechanical property failure can occur, 

o T-cuts.

■ Caused by localised cooling, 

o Head or tail end pinching.

■ Caused by excess water added to the strip.

• Insufficient water applied to the strip, this can result in the following;

o High Finishing Mill exit temperature.

■ Due to decreased cooling mechanical property failure can occur, 

o Scale.

■ Insufficient water applied to the strip, causes high temperatures which 

leads to scale formation.



After the F5 pre-sprays the transfer bar enters the Finishing Mill. The Finishing Mill consists 

o f a series of high powered mill stands which will reduce the transfer bar into a flat 

continuous strip of the specified thickness. The Finishing Mill also controls the shape and 

temperature of the strip that in turn controls the metallurgical properties achieved by the strip. 

The phase transformation will occur when the correct temperature for the chemistry is 

reached, this will usually occur on the Run Out Table where the cooling is controlled with a 

water cooling system. However, with low temperatures phase transformation can also occur 

in the Finishing Mill.

Following the Finishing Mill is the Run Out Table (ROT). The ROT controls the mechanical 

properties of the strip via manipulation o f the phase transformation. This is achieved by 

controlling the cooling pattern of the strip which will affect the microstructure present. After 

the Run Out Table the steel is coiled and dispatched to the customer.

7.7.7.6 Finishing Mill Scrubbers and Edge Sprays

The Finishing Mill scrubber system is situated within the guides at the entry to the first three 

Finishing Mill stands. There are two main purposes of the Scrubber system:

1. To condition the surface temperature o f the bar to avoid reaching temperatures where 

tertiary scale could be formed which would then get rolled into the strip surface.

2. To provide a degree o f scale removal before each roll bite.

Like the scrubbers the edge sprays are situated at the leading edge o f the entry guides to the 

first 3 stands. The purpose of the edge cooling sprays is to cool the strip surface, along the 

strip edges, with the aim of preventing the surface temperature o f the bar from reaching a 

temperature where tertiary scale could be formed.

The edge sprays are required due to the edge section (100 - 150mm in from the edge) having 

a higher temperature than the centre surface temperature. A 50 °C increase in edge 

temperature is observed compared to the centre line temperature. This temperature difference 

is due to heating in the Furnace.



There are a number of potential failures that are associated with the scrubbers and edge 

sprays, which include the following;

• Leak in header or missing nozzle

o Uneven cooling across the strip width causes localised temperature variations. 

This can cause a ridge across the profile structure. After cold reduction this 

will appear as a shape defect, 

o Surface temperature too high in early stands. This can lead to tertiary scale on 

the strip surface.

• Incorrect use on Heavy Gauge products.

o Surface temperature is too low due to too much water being applied. This can 

result in transverse cuts on the strip surface.

For the edge cooling sprays to work effectively, the surface o f the bar needs to be free o f 

water coming from the previous interstand cooling curtains or from badly fitting top exit 

strippers. Ineffective cooling will result. This also applies to the effectiveness o f the top 

Scrubbers. The air blow-offs, situated on the side of the mill housing, need to work 

effectively to clear the water off the surface o f the strip.

1.1.7.7 Interstand Cooling

The interstand cooling system is located in the top and bottom exit furniture o f the first 4 

Finishing stands (F5-F8). The purpose o f the interstand cooling system is to cool the strip as 

it is being rolled. It comprises of a series of continuous full width cooling water curtains 

designed to cool the strip as it is being rolled. This is an automatic control system (but can be 

put into manual mode) done as part of the Finishing Mill exit temperature control. It also 

conditions the bar so that the formation of tertiary scale is suppressed, especially at the exit o f 

the first 2 stands when the surface temperature of the product is at its highest.

1.1.8 Parsytec

Parsytec is a computer aided Surface Inspection System (SIS) that is in use in more than 25 

rolling mills worldwide. The defect catalogue has been built using experience of inspection 

personnel together with information gathered from the Parsytec system. In the Hot Mill in



Port Talbot the top surface cameras are at the start o f the ROT and the bottom surface is at 

the end o f the Hot Mill.

1.1.8.1 Detection

All heterogeneous sections o f the strip are detected by the Parsytec system. Issues with 

correct classification can occur due to environmental conditions. The main environmental 

conditions in the Hot Mill include water droplets, Parsytec utilises a suppression algorithm to 

remove these environmental factors. However, using these suppression algorithms inevitably 

has the potential to also suppress real defects which are covered by pseudo defects like water 

drops. Furthermore, high levels o f pseudo defects can consume the system’s computing at 

high rates. This can result in real defects going unrecognized while the system is busy 

processing pseudo defects. Disturbances created by the physical environment can never be 

completely eliminated even by the most sophisticated software that Parsytec has to offer. It is 

therefore highly beneficial to take measures to protect the surface inspection system and the 

inspected strip surface from adverse environmental influences.

It should also be noted that the system does not scan the surface of the strip in a uniform way. 

The system gives preferential treatment to areas that are likely to have roll type defects. This 

can result in a periodic pattern for scale appearing on the strip due to this more intensive scan.

1.1.8.2 Classification

Detected sections are classified into features and these features are compared to the Parsytec 

catalogue to determine which defect the feature best represents. Problems with classification 

arise when defects overlap each other or environmental conditions (water/steam) obscure the 

defect. These can make it harder for an accurate judgement to be made and more likely that 

the detected area will be classified as a non-classified defect.



Table 3. Parsytec Recognition Rates.

Commissioned System
Initial Performance

Performance

Area Defects Hit Rate Alarm Rate Hit Rate Alarm Rate

Heavy Scale 

Medium Scale
80% 5%

90% 3 %

Red Scale not included



Table 3 shows the expected accuracy of the Parsytec system from initial performance to when 

the system is working fully. The hit rate is the percentage o f coils with a scale defect that are 

caught by the Parsytec software. The alarm rate is the percentage of coils that are incorrectly 

classified by the system.

1.1.8.3 Action

The operator uses the Parsytec results to determine an action for the coil. The data is also 

communicated to the Finishing Mill pulpit to allow corrections to be made to improve future 

runs.

1.1.9 Run Out Table (ROT) and Coiling

There are two functions o f the ROT, the first is to connect the Finishing Mill to the coilers. 

The second function of the ROT is to provide an area for the correct degree o f cooling to 

occur so that the required mechanical properties can be achieved.

After the ROT section is the coiling section. The purpose of the coiling is to coil the strip so 

that it can be sent to the customer or for further processing.

1.1.10 Conclusions for Process

The Hot Mill process at Port Talbot has a long history o f suffering from scale related quality 

issues, mostly due to its layout and the power of the Finishing Mill stands. This lack o f power 

means that harder grades need to be exposed to higher temperatures to allow them to be 

rolled, which results in a greater chance o f scale formation. To be able to discern the impact 

of scale formation on the process, the process of scale formation needs to be understood.



1.2 Scale

Scale is an oxide layer that builds up on the surface o f the steel when it is exposed to 

environmental conditions. Iron oxide can form at any point during the life cycle of the 

product; however it is particularly likely to arise at the Hot Mill. Higher temperatures 

increase the overall reaction rate due to greater kinetic energy, this causes a faster chemical 

reaction. This is why it is important to gain an understanding of the scale creation at the Hot 

Mill. However, this section will concentrate on understanding scale formation at the Hot Mill 

and what factors contribute to its formation.

1.2.1 What is iron oxide made of?

The scale that forms closest to the steel substrate is Wustite (FeO) followed by Magnetite 

(Fe3C>4) and Hematite (Fe2 0 3 ) (see figure 4). The ratio of the phases can vary considerably 

depending on the temperature, time and steel chemistry; a ratio of 95:4:1 is to be expected 

(Wustite:Magnetite:Hematite). Bolt (2003) states that the important properties to consider for 

the oxide layer are thickness, composition, adhesion and structure o f the scale formed.

Hematite

  _

Magnetite

Wustite

Steel Substrate

Figure 4. Composition of scale.



The thickness o f the oxide layer will also be determined by its processing conditions. Bolt 

(2003) states that the most important parameters for thickness are the finishing temperature 

and gauge of the coil. Depending on the temperature of the strip, oxide could be formed at the 

ROT and also during coiling but that scale formation at these stages is rather modest. This is 

supported in the work by Yang et a l (2008), whereby they discuss the influence o f Silicon on 

thickness. Yang et a l (2008) investigated steels with Silicon contents ranging from 0.01 - 

1.91 wt. % and concluded that oxidation rates and scale thickness decreased with increasing 

Silicon. They also concluded that different oxides are formed at different percentages of 

Silicon. This work is important because it demonstrates the importance o f limiting the 

chemistry range to avoid scales with different properties forming. Taniguchi et al. (2001) 

further demonstrated the importance of limiting the chemistry range. They found that when 

Silicon is at high percentages (1.14 wt. % and above), the penetration depth o f the scale 

increases with increasing Silicon. The work of Munther and Lenard (1999) concluded that 

thick scale provides a degree of lubrication to the work rolls, while a thin scale has a higher 

coefficient o f friction and is more adherent to the metal substrate, which makes it harder to 

remove. Therefore from the work o f Yang et a l (2008) and Taniguchi et a l (2001) it can be 

concluded that increasing the Silicon percentage creates a thin adherent layer o f scale which 

can a high deree o f penetration into the steel substrate. However, Silicon is not likely to play 

an important part in this analysis due to the percentage and limited range present in the steel 

investigated.

The composition of these formed oxides influences the properties o f the scale. The classical 

three-layer scale model, as observed in figure 4, reveals that when pure iron is oxidised under 

normal conditions, Wustite (FeO) is formed closest to the steel substrate followed by 

Magnetite (Fe3 0 4 ) and Hematite (Fe2C>3). Each of these oxides have unique properties. Bolt 

(2003) states that at hot rolling temperatures, Wustite has a high plasticity, but is extremely 

brittle at room temperature, which means that a large amount of Wustite will result in poor 

scale cohesion at room temperatures. Hematite is extremely hard and brittle and is highly 

detrimental during all stages o f processing due to the increased work roll wear it causes and 

the poor strip quality it creates. Magnetite is the phase that is least brittle at room 

temperature. This phase can be tolerated in small quantities, because it is not as hard as 

Hematite and shows some plasticity at hot rolling temperatures. Thinner scales are more 

adherent than thicker scales and the reason for their increased adherence is the higher 

amounts of Hematite and Magnetite, especially closer to the steel substrate. This causes



problems for further processing because Magnetite and Hematite are more adherent than 

Wustite, which makes it more difficult to remove.

The adherence of the scale to the steel is proportional to the composition of the scale. This is 

because Magnetite and Hematite are a lot harder than Wustite and are more difficult to 

remove by pickling/scale breakers. This increased tensile strength (see table 4) of the 

Magnetite and Hematite contributes to increased work roll wear and rolled in scale.

Table 4. Typical mechanical properties for scale phases (Bolt (2003)).

Tensile Strength at room temperature

Wustite 0.4 M Pa

Magnetite 40 M P a

Hematite 10 M P a

1.2.2 Influences on Scale

There is no single variable that can be attributed to scale formation in the Hot Mill. To truly 

comprehend complex relationships between the variables affecting scale formation the 

relationships need to be understood. There are many potentially important variables 

including;

1. Mill layout

2. Temperature

3. Dimensions

4. Time between different processes

5. Chemistry

6. Water systems

7. Rolling



The mill layout is o f vital importance to how the different variables will be able to interact 

with each other, leading to scale formation. Blazevic (1995, 1996) stated that the distance 

between the descaler and Finishing Mill entry has a significant impact on tertiary scale 

formation. The shorter the gap between the sprays and the Finishing Mill entry allows less 

opportunity for scale formation to occur. Even though the mill layout is of vital importance 

and needs to be considered when reading literature on scale, the aims o f this project are not to 

recommend a new mill layout for Port Talbot Hot Mill rather to better understand how the 

variables are influencing scale formation. Due to this a more detailed discussion on the 

advantages o f different mill layout will not be performed in this review. Instead the Port 

Talbot Hot Mill will be discussed.

1.2.4 Temperature

The thickness of the scale is proportional to temperature and time. Sun et a l (2004) observed 

that as temperature and oxidation time increases the scale thickness also increases. It was 

observed that for the first 20 seconds the scale increased in thickness according to linear 

growth, and then by parabolic growth after that. They explain this observation by the 

transport mechanism of oxidation. Initially the scale is very thin which allows rapid diffusion 

o f oxygen with the metal at the iron-air interface. As the scale layer increases in thickness the 

transport rate will reduce and the diffusion will obey parabolic laws.

The composition o f the scale that develops is also highly temperature dependent. At 

temperatures greater than 570 °C the main composition of scale is Wustite, which is generally 

the thickest layer. This is then followed by Magnetite and Hematite (see figure 4). The 

literature on what composition o f scale is observed at different temperatures is highly 

variable, mostly due to different Hot Mill layouts, different types of steel, different 

experimental methods, and different temperatures. The literature review of Bolt (2000) 

concludes that as the temperature is increased the more likely it becomes that the scale 

formed will be composed of a higher percentage of Magnetite and Hematite at the expense of 

Wustite.



It should also be noted that the surface temperature of the transfer bar can be vastly different 

from the core temperature o f the coil, especially when the coil interacts with interstand sprays 

and work rolls. The surface temperature will rise due to heat flow from the core o f the coil. 

The amount o f scale formed depends on the surface temperature at the time, but the surface 

temperature is also dependant on the scale thickness. The temperature recorded by the 

pyrometers gives a good indicator of the temperature o f the steel; however it can be 

influenced environmental factors. If  the scale formed across the coil is not consistent then the 

surface temperature will not be consistent.

Thermal stresses caused by thermal expansion due to cooling/heating and metallographic 

changes can help break up the scale. For example when austenite transforms to ferrite a 1 % 

volume expansion occurs, which can aid in breaking up the scale.

1.2.5 Dimensions

The main influence o f the transfer bar and strip dimensions is the effect this has on 

temperature. Thinner gauges are more difficult to keep at the required temperature and 

thicker gauges have a large difference in temperature between the centre and surface of the 

coil. The percentage o f gauge reduction will also affect the amount of temperature in the slab 

and how much scale will form.

1.2.6 Time

At a constant temperature the growth of scale is linear with time until the scale becomes 

sufficiently thick. This initial linear growth is when the Wustite is formed. After this 

thickness is reached the growth is determined by the diffusion o f iron ions, this is when 

Magnetite and Hematite are formed.

1.2.7 Chemistry

The chemistry o f the steel substrate has a strong influence on the type of scale that will form 

in the Hot Mill. The two elements that have the biggest influence on scale properties are 

Silicon and Phosphorus. If  Silicon and Phosphorus are at levels and temperatures where they 

will influence scale then Silicon will have the larger impact.



The distribution of elements in the scale is not uniform. Elements that can be found 

throughout the scale include Manganese, Aluminium (to an extent) and Silicon (to an extent). 

However, the majority o f elements have a high oxygen affinity and will form oxides that will 

accumulate in the scale at the metal/scale interface; these elements include Aluminium, 

Silicon, Phosphorus, Boron, Chromium, Molydbenum, Titanium, Niobium, and Zirconium. 

More noble elements such as Copper, Nickel and Tin will become enriched in the metal 

increasing the adhesion o f the scale.

1.2.7.1 Silicon

The work done by Taniguchi et al. (2001) and by Yang et al. (2008) has discussed some of 

the influences of Silicon on scale. They found that the Silicon decreases the amount o f 

oxidation that occurs which in turn reduces the scale thickness, but at high percentages of 

Silicon (> 1.14 wt. %) an oxide enriched with Silicon increases the oxides adhesion to the 

steel, making it harder to remove. Increased levels o f Silicon have the effect o f vastly 

increasing the oxidation rate especially above 1177 °C. This is due to the temperature o f 1177 

°C being the eutectic temperature o f Fe0-Fe2Si04. This causes a catastrophic amount of 

scale to be formed due to the presence of the liquid phase at the interface and at the grain 

boundaries. Overall the scale will be very adherent to the metal. Silicon can also cause red 

scale/tiger stripes to form due to an increased metal/scale entanglement. This type o f scale 

can be extremely difficult to remove.

Silicon has a large influence on scale, however, the grades under investigation have low 

levels of Silicon and a limited range. Therefore, Silicon is not likely to be observed as a 

significant variable.

1.2.7.2 Phosphorus

For tertiary scale formation, Bolt (2000) states that Phosphorus is o f particular importance. 

Phosphorus reduces the overall amount of scale that is able to form on the strip. This is 

because Phosphorus becomes enriched at the metal/scale interface which suppresses the 

diffusion of Fe ions. This lack o f Fe ions will not stop the oxidation from occurring, but will 

promote the formation o f Magnetite and Hematite over Wustite.



These observations are corroborated by operator’s experiences with re-phosphorised steels 

being very sensitive to oxide defects; increased work roll wear and increased frequency of 

work roll changes. This increased wear is due to increased friction caused by the harder scale 

(Magnetite and Hematite) being present.

1.2.8 Descaler sprays

After the coil box is the Crop Shear followed by the FSB (see figure 2). The purpose of the 

FSB is to break up scale on the strip before it enters the Finishing Mill. There are descaling 

sprays situated prior to F5 (the first Finishing Mill stand) and are used to suppress the 

formation o f scale. There are also interstand cooling sprays between each pair o f work rolls.

Silk (2001) investigates descaler effectiveness and determines that the main components of 

successful descaling include the impact pressures used and the angle o f the descaler 

conditioning sprays. The slabs then proceed to the Interstand Spray System for further scale 

to be removed by this spray. This system is either operated manually or run in automatic 

mode. There are many practical problems when using the descalers. However, the most 

important one is the higher the flow the more descaling can be achieved but the faster the 

temperature is reduced. This loss of temperature is a significant concern because if  the strip 

loses too much heat it will not be within its finishing temperature specification and will not 

achieve the required mechanical properties. If the temperature of the strip is lowered further 

then the strip might become too cold to be hot rolled and could damage the mill. This is a 

particular problem for thin gauges because they have less internal heat to maintain a useable 

working temperature.

A more accurate term for descaler sprays is conditioning sprays. As their purpose in reducing 

scale formation is to condition the surface o f the strip to not generate scale.

1.2.9 Rolling

Munther et a l investigated the effect of different scale thicknesses on the friction within the 

Hot Mill work rolls. It was discussed that a thicker scale produces a lower degree of friction 

and adds a degree o f lubricity to the rolls; and that a thin scale was more adherent, imparting



a higher friction and was more difficult to remove than the thicker scale. It was determined 

that the thickness of scale had a greater influence on friction than the amount of reduction, 

the rolling temperature, and the roll velocity.

There are two types o f rolls that are used in the Finishing Mill; these are high chrome (HiCr) 

and high strength steel (HSS) rolls. The HSS rolls are cheaper and can last longer than HiCr 

rolls. However, due to an uneven build up o f scale on the HSS rolls there will be an impact 

on the scale on the strip. This will result in a poor surface quality o f the strip when HSS rolls 

are used instead of HiCr rolls. Due to high surface demands, some products (such as tinplate) 

will only be rolled with HiCr rolls rather than HSS rolls.

1.2.10 Downstream Scale

If scale is left to form and not removed before it reaches its end application it can have a 

detrimental effect on surface quality. Figure 5 indicates how scale can appear at the 

galvanising line. If scale is left on the surface of the coil at the coating stage then scale could 

cause quality issues including;

• Fleck - Worn work roll surfaces on finishing stands pick up scale from strip and 

impress pattern back onto strip.

• Jet - Scale formed in Reheat Furnaces or between Roughing stands - not removed by 

water sprays due to inadequate water pressure or blocked jets.

• Pits - Small piece(s) o f scale not washed off between finishing stands that pickle out 

leaving deep pit(s).

• Rolled in - Single pieces o f scale, rolled into the strip during hot rolling and not 

pickled out.



Figure 5. Scale as observed from the galvanising line.

1.2.11 Conclusions to Scale section

Scale has a detrimental effect on surface quality especially for downstream applications. The 

formation o f scale is influenced by a number of factors including temperature, time and 

chemistry. These factors and those that influence them need to be considered when selecting 

the dataset and performing the analysis.
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1.3 D ata M ining

Data mining is a valuable set o f techniques which are utilised for improving the 

understanding of a system. This is achieved by understanding the system through expert 

knowledge, with the aim of collecting relevant and usable data sources so that they can be 

interrogated to give a greater understanding of the process. Data mining techniques are used 

in many different sectors, including the steel industry.

Data mining is a powerful method o f getting useful information from a dataset. There are 

however several factors which need to be considered when performing any data mining 

technique.

• Badly formatted data

o This can give unexplained or inaccurate results.

•  Non standard classification terms and methods

o An example o f this is the location of defects in a coil. Some systems will mark 

the defect at its centre while others will log the edge position. If the difference 

is not noted then similarities and differences in the data can be missed, and 

inaccurate results will be acted on.

• Lack of detailed information on the process.

o Without the having the important variables for the system, links can be made 

between data that cannot be explained. Not understanding the relationships 

between how the data interacts with other data will result in poor results.

•  Black-box techniques.

o Some techniques are difficult to interrogate and understand how decisions 

have been made. If the results come with conclusions that are expensive to 

implement or go against past practices, then having an explainable reason will 

help the argument. An example of a black-box technique is an artificial neural 

network.

• Accuracy of the data.

o If the accuracy o f the data is not known then the accuracy of the results can be 

called into question.



1.3.1 Directed and Undirected Techniques

One method of classifying data mining techniques is to classify them into directed or 

undirected methods. Directed and undirected are also referred to as hypothesis testing and 

knowledge discovery. Hypothesis testing is a top-down approach, with the aim being to 

prove/disprove a given theory. Knowledge discovery is a bottom-up approach with the 

intention being to interrogate the data to find out something unknown.

There is a specific process for both directed and undirected methods. First the undirected 

method will be explained.

• Identify data availability and reliability, to do this attention needs to be given to the 

following

o Understanding o f how data is acquired (sensors, probes, manual/automatic 

recording systems) 

o Find out how the data is stored and the best method of extracting it 

o Investigate if errors in data alignment can occur when the data is retrieved

• Format data for analysis

o Ensure the data can be used for the chosen data mining technique

• Create a model and use a training data set to train the model

• Use an evaluation data set to evaluate the accuracy of the model

• Use the model on live data to show similarities in the data

• Decide which similarities require further investigation

• Perform the required direct method to get further information from the data

• Investigate another hypothesis

The directed method is as follows;

• Arrange the data so that it is clustered into relevant classes

• Having the data clustered by an undirected method is standard

• An example o f preclassified data is splitting process data from the galvanising line 

into classes for annealing code or grade

• Format data for analysis

• Ensure the data can be used for the chosen data mining technique

• Create a model and use a training data set to train the model

• Use an evaluation data set to evaluate the accuracy of the model



• Use the model on live data to show similarities in the data 

A more detailed review is provided for specific data mining techniques.

1.3.2 Cluster Detection

Clustering is used to determine similarities between the data; it does this by assigning groups 

to the data depending on their variables. This is an example o f an undirected data mining 

technique.

1.3.3 Binomial Regression

This type o f regression can take a variety o f input values and outputs them as 1 which equals 

success or 0 which equals failure. There are many different types o f binomial regression, 

including logistic regression.

By fitting data to a logistic curve the probability o f an event occuring can be predicted, this is 

called Logistic Regression. The predictor variables used can be either numerical or 

categorical. This model’s strength comes from the fact that any value for the input can be fed 

into the model while the outputed value is between 0 and 1. The input value represents the 

factors that influence the probability of the data.

The probit model is used in binomial regression as a fast way o f determining the maximum 

likely estimates for a model.

1.3.4 Classification and Regression Trees (CART)

CART uses a decision tree method for defining data into sets. The main advantage of 

decision trees is that it is easy to explain the results and work out which parameters affect the 

process. Due to the ease in explaining the rules, they can be expressed easily in a SQL search, 

which makes it easy to add new records. CART is an example of a directed data mining 

technique and is particularly good at classification of data.

CART partitions the inputted data using a series of rules. These rules usually consist of



interrogating the data to split it on the grounds of if  it is greater than or less than a given 

value.

1.3.4.1 Pruning

Pruning is performed to improve the efficiency o f the model. Pruning takes into account the 

accuracy and size of the model, with the intention of reducing the size but keeping as much of 

the accuracy as possible.

As the data is split generally the probability of misclassification1 (R*(T)) will reduce. When a
2 • •  • •  ♦ •node contains only one value, it is classified as that value and will give a misclassification

result as a zero. However, in practice there are an optimum number of nodes to be used. 

Having a large number of nodes will result in a decrease in the R" value. Increasing the 

number of nodes beyond the optimum value will result in a detrimental impact on the 

prediction o f any new datasets. This is due to overtraining o f the training dataset, which 

means that the model is too specific to the dataset to give an accurate prediction o f unseen 

datasets. This can result in the tree with a large number of nodes having a lower R" value than 

a tree with the optimum nodes. A tree with fewer nodes will not usually have enough 

classification power to be a useful as a predicting tool.

The optimum number o f nodes can be reached by one of two ways. The first method is to 

grow a tree that is far too big and then prune it back to reach the optimum value. The second 

method is to work out a better method of predicting the R*(T) value. A good value of R*(T) 

can be obtained by using a test sample of a larger sample.

1.3.5 Artificial Neural Networks (ANN)

Artificial neural networks are based on the neural connections present in the brain. The neural 

network uses a training set to generalize relationships for the data, and then it is used to 

predict general data sets. Neural networks have two weaknesses. The first is their sensitivity 

to the given format o f the data it is used on. A change in format can give vastly different

1 When R*(T)=1=100 % misclassification, R*(T)=0=100 % classified
2 A node is the result of a split.



results; so a vast amount of time is spent formatting the data and removing anomalous results 

prior to analysis. The other weakness is the lack o f description in the results output by the 

neural network. Neural networks can be applied to undirected data mining techniques in the 

form of Self Organising Maps (SOM's).

SOM's output their results in the form of a 2D map. Further analysis o f the map can be 

carried out using clustering, to attain information on the different properties.

1.3.6 Multivariate Adaptive Regression Splines (MARS)

MARS is a non-parametric regression analysis that is used to improve the accuracy o f linear 

models. There are many benefits and disadvantages to the MARS technique including the 

improved flexibility over the linear regression technique; however it is more difficult to prove 

that the MARS model is more accurate than it is for the linear model. Explanation of results 

is easier for MARS models than neural networks, because they are represented graphically 

and the knots can be explained using the rules that created them. Another advantage over 

neural networks is the data does not have to be prepared before it is used, due to the hinge 

functions automatically partitioning the data.

1.3.6.1 Hinge Function

The addition o f a hinge function allows the MARS model to partition data in a similar way to 

CART models. This partitioned data can be treated independently from each other which is 

beneficial for inputs that act differently under changing conditions. This is achieved within 

the hinge function with the addition of a constant that is usually referred to as a knot. The 

hinge function is usually set to zero for part of its range and will change when the conditions 

are met. A simple hinge function will often look like this:

max(0,x-c) or max(0,c-x)

c=constant/knot

When the hinge function achieves its knot value it is activated and the data is partitioned.



MARS is used for both categorical and numerical data, but the hinges often give improved 

accuracy for numerical data. The use of large datasets is common with MARS models, but 

some other techniques can obtain the required information faster, such as CART.

1.3.7  Principle Component Analysis (PCA)

The purpose o f PCA is to turn variables into linararity uncorrelated variables called principle 

components. This is useful if  the dimensionality of the dataset needs to be reduced but the 

variability needs to be maintained.

1.3.8 Partial Least Squares (PLS)

The PLS method has many elements in common with PCA. The main difference is that rather 

than trying to reduce the variance it finds a linear regression of the data by projecting the 

observed and predicted values in to a new space.

1.3.9 Genetic Algorithms

Genetic algorithms were developed around the idea of using the principles of natural 

selection to identify the optimum set of parameters to work out the best result. The model is 

run several times and the least predictive results are removed each time, so that the best set o f 

parameters is converged on as the program is run. Genetic algorithms are often used to 

improve other techniques such as neural networks. This is an example of a directed data 

mining technique.

1.3.10 Multinomial Logistical Regression (MLR)

Instead o f a binary model that has two possible outcomes, 1 and 0. A multinomial model can 

have multiple outcomes, which can (in some cases) be used to more accurately represent the 

dataset.



1.3.11 Adaptive Neural Fuzzy Inference System (ANFIS)

The ANFIS model combines elements from neural networks and fuzzy logic principles.

1.3.12 Conclusions to Data Mining

There are many different techniques used in data mining, all with their own strengths and 

weaknesses. The key factor in successful data mining is to understand the data which is 

available, and to be able to perform a successful analysis from that data.

Whatever statistical approach is used to model the formation o f scale at the Hot Mill, it must 

address the issues associated with co-linearity and measurement error. One approach is to 

directly model the count data collected by the Parsytec system, i.e. the recorded number of 

defects on the top (and or bottom) surface of the coil. Traditionally, this is done using a 

Poisson distribution with the mean of the distribution being made a linear function o f the 

process variables. For the data set collected for this thesis this is not straightforward because 

this scale count data has many “missing” values - for example none o f the coils in the data set 

had scale counts in the range 991 to 1002 (there are no values within this range). Indeed there 

are many other such missing value counts in this data set (over the recorded range of 0 -  4000 

counts). To use the Poisson model would therefore require a form of truncation and 

consequent loss of information. A nonlinear variation of this approach would model the mean 

o f the distribution using, for example, a neural network.

The following chapters will explain the methodology behind several different data mining 

techniques. The methods that will be included encompass the following;

•  Partial Least Squares (PLS)

• Logit

• Principle Component Analysis (PCA)

• Multinomial Logistical Regression (MLR)

• Adaptive Neuro Inference Fuzzy Systems (ANFIS)

Due to the inherent strengths and weaknesses of different data mining techniques it is likely 

that multiple techniques will need to be employed to achieve the best results.
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Chapter 2. Aims of Research Project

This project aims to use a collection of data mining techniques to better understand the 

influence o f Hot Mill process parameters on scale formation at Port Talbot Hot Strip Mill in 

South Wales. This understanding will then be used to recommend operating conditions 

designed to minimise the formation of scale at the Hot Mill.

The dataset to which these data mining techniques were applied was carefully chosen to 

reduce process variation. There are several main factors that were considered to minimise this 

variability including time period, grade and gauge investigated. The following data mining 

techniques were chosen to investigate this dataset;

• Partial Least Squares (PLS)

• Logit Analysis

• Principle Component Analysis (PCA)

• Multinomial Logistical Regression (MLR)

• Adaptive Neuro Inference Fuzzy Systems (ANFIS)

These data mining techniques were chosen because they represent different ways of 

investigating the dataset. Some o f the differences include diverse ways to represent the 

dependant variable used in the analysis. Three different representations were used binary, 

multinomial and continuous.



Chapter 3. Experimental Techniques 

3.1 Data Collection

The purpose of this section was to understand how data was collected from the available 

process parameters, with the intention of better understanding their influence on scale 

formation by using data mining techniques.

3.1.1 Considerations

To be able to achieve a successful data mining investigation, the data sampled needs to be 

carefully selected to be able to accurately represent the process being investigated. The main 

factors that need to be considered for scale formation include;

• A large dataset

o Many o f the data mining techniques require large datasets to be effective

• A comparable dataset

o The cases in the dataset investigated need to be comparable to each other

• A clean dataset

o Data recording anomalies need to be removed, these include;

■ Probe recording errors

• Comparable time period

o Due to changes and improvements being implemented to the process o f the 

Hot Mill, longer time periods may not be comparable for the duration o f the 

time period.

• Representative independent variables

o The variables selected to represent the process

• Representative dependent variables

o A variable will need to be chosen to represent the effect o f the process 

variables on scale.

• Processing

o The material needs to be processed the same way, with particular attention to;

■ Gauge and grade

• Different gauges and grades will react and be reacted to 

differently when being processed in the Hot Mill



• HSS/HiCr rolls will react differently to rolling over time and 

could give different results.

• Schedule

o It has been noticed that the coils processed in the Hot Mill are less stable when 

the gauge or grade is changed

• Application

o The Dataset needs to represent material for the same application so the results 

are meaningful

The above problems were overcome by using data associated with coils processed for 

Tinplate applications. The tinplate products have several advantages over other products 

including;

• The tinplate product is intended for surface critical application so scale levels must be 

low.

• All the coils in the dataset have the same chemistry requirements.

• To minimise the effect o f different heating/cooling cycles, only a single gauge o f 2.1 

mm has been investigated.

• This is a high quantity product type so a lot o f material is processed, and they are 

processed in their own rounds.

Coil data was collected between September 2009 and March 2010 for all the process 

variables described above and table 5 gives some descriptive statistics for this sample of data, 

together with the full name of each process variable and its short hand descriptor -  Xj. The 

sample size was n = 1577.



Table 5. Process Variables and their Sample Means and Standard Deviations.

Process Variable 

Wt. % Carbon 

Wt.% Manganese 

Wt. % Phosphorus 

Wt. % Sulphur 

Wt. % Silicon 

Wt. % Copper 

W t.%  Nickel 

Wt. % Chromium 

Wt. % Aluminium 

Wt. % Tin 

Wt. % Nitrogen 

Wt. % solAl

Maximum RM Exit Temperature, °C 

Minimum RM Exit Temperature, °C 

Average RM Exit Temperature, °C 

Maximum CS Temperature, °C 

Minimum CS Temperature, °C 

Average CS Temperature, °C 

Maximum FM Exit Temperature, °C 

Minimum FM Exit Temperature, °C 

Average FM Exit Temperature, °C 

ROT Temperature, °C 

Maximum Coiling Temperature, °C 

Minimum Coiling Temperature, °C 

Average Coiling Temperature, °C 

Furnace Aim Temperature - Average 

Temperature, °C

Furnace Centre/Surface Difference, °C 

Furnace Surface Temperature, °C 

Furnace Centre Temperature, °C 

Scrubber Pressure (set)

xj Mean Standard Deviation

xl 0.069 0.0042

x2 0.485 0.0226

x3 0.014 0.0031

x4 0.014 0.003

x5 0.005 0.0032

x6 0.016 0.0059

x7 0.011 0.003

x8 0.018 0.004

x9 0.034 0.0047

xlO 0.003 0.0018

x l 1 0.0125 0.0009

x l2 0.031 0.0043

xl3 1121.75 17.87

x l4 918.34 11.97

xl5 1099.43 16.18

xl6 1099.88 19.89

x l7 951.69 48.59

xl8 1069.55 20.8

x l9 907.16 7.18

x20 829.87 28.96

x21 881.05 5.75

x22 731.35 25.13

x23 693.133 28.3786

x24 438.354 53.8953

x25 561.627 2.7173

x26 4.77933 14.587

x27 44.9575 24.2802

x28 1227.13 19.5941

x29 1182.48 17.7393

x30 1.748 0.6603



ISS (set) x31 -0.692 0.4616

Thread Speed x32 11.370 0.1772

Slab Length (m) x33 9.677154 0.470653

Slab Width (m) x34 0.95601 0.047791

Slab Gauge (m) x35 0.235172 0.003213

Slab Weight (tonnes) x36 17.05425 1.163756

Transfer Length (m) x37 61.01447 4.611045

Transfer Gauge (m) x38 0.040309 0.002432

Coil Width (m) x39 906.4052 52.28183

Top Scale Count x40 126.200 219.9389

Bottom Scale Count x41 250.008 402.6597

Indictor Variable Y 2.48193 1.09386

Scale Count Indicator (Binary) YB 0.327 0.4693

RM = Roughing Mill, CS = Crop Shear, FM = Finishing Mill, ROT = Run Out 

Table, ISS = Interstand Spray System (-1 = Manual and 0 = Automatic), Srubber 

pressure (0 = low pressure, 1 = medium pressure, 2 = high pressure). YB = 1 when 

the scale count on the bottom of the sample exceeds 200 and zero otherwise.

The data collected for this investigation was obtained from Port Talbot Hot Mill. The 

temperature data was collected from temperature sensors at various points along the Hot Mill. 

The temperature sensor is positioned in the centre of each section of the hot mill and records 

the temperature along the entire length o f the coil. The temperature data is converted into 

maximum, average, and minimum for each coil. The chemistries of the coil are measured at 

the secondary steel making process stage. The scale count is the absolute bottom scale count 

from the Parsytec inspection system.

3.2 Statistical Methods

This chapter will lay out the methodology used in the Logit, PCA, PLS, MLR and ANFIS 

models used in the analysis o f the dataset described in the data collection section.



3.2.1 Binary Statistical methodology

The Logit, PCA and PLS all use a binary split to describe the dependent variable o f the 

bottom scale count. The dependent variable takes on a value o f unity when the scale count on 

the bottom of table 5 exceeds 200 and zero otherwise. The cut o f 200 was chosen for two 

main reasons. The first reason was that scale counts lower than this are unlikely to be a 

problem for further processing but as the scale count increases above 200 it becomes more 

difficult to determine if  the scale will cause a problem for further processing without 

understanding how adherent the scale is. The second reason is that a split o f 200 makes the 

population o f bottom surface affected coils represent more than 30 % of the dataset which 

makes it easier to be confident about the output o f the models, i.e. it creates a more balanced 

data set from which to apply non-linear Partial Least Squares.



Chapter 4. Identification, for control, of the process parameters influencing tertiary 

scale formation at the hot strip mill using a binary choice model

4.1 Principal component analysis

Principal component analysis (PCA), see Jolliffe (2002) for a good review o f this technique, 

is an extensively used technique o f multivariate linear data analysis. The purpose of PCA is 

to reduce the dimensionality o f the data but still maintain its variability and to remove the 

correlation amongst the process variables used to control the Hot Mill process.

The principal components (PC) are calculated as follows. The p process variables (xi to xp) 

are standardised to have a zero mean and unit variance to avoid the problems associated with 

units of measurement. Then p linear combinations o f these variables can be formed as 

follows

PC1 — T &12 2̂ "T *“ CL-±pZp 

PC2 =  &2lz l  T a 22Z2 T a2pZp

PCp CLpiZ-i +  CLp2Z2 T- CLppZp

Eq. (4.1a)

where the z variables are the standardised values of the Xj (j = p) process variables shown in 

table 5. The so called loadings, an to aip, are then chosen so as to maximise the variance o f 

PCi subject to the normalising condition (the purpose of the normalising condition is to 

maintain the same sum of loadings squared across all o f the principle components):

ah  +  a\2 +  ••• +  =  1

Eq. (4.1b)

PCj is then stated to be the first principal component and is a linear function o f the z ’s (and 

thus the process variables) that has the highest variance. PC2 then has the next highest 

variance and so on until all the variation in the z ’s is picked up by the p principal 

components. That is



variance(PCi) + variance(PC2) + .... + variance(PCp) = variance(zi) + v a rian ce^ ) + .... + 

variance(zp) = p

with

variance(PCi) > variance(PC2) > ... > variance(PCp)

Various different algorithms can be used to find values for these loadings, ranging from the 

simple summation method put forward by Burt (1945) (of which a good review can be found 

in Childs (1970)) to algorithms that calculate a spectral decomposition of the correlation 

matrix amongst all the x variables (see the text by Mardia et al. (1979)). The Eigen values 

from this decomposition measure the variation in all the process variables explained by each 

principal component. Thus the first Eigen values from this decomposition measures the 

variation in all the process variables explained by the first principal component. The Eigen 

Vector from this decomposition contains the required loadings for each principal component. 

By construction these principal components are also all orthogonal and hence completely 

uncorrelated with each other. The spectral decomposition method will be used for this 

Principle Component Analysis.

Further, Cattell (1952) has suggested that only those principal components having an Eigen 

value greater than 1 should be considered as essential and therefore retained in the analysis. 

This simple rule allows for a substantial reduction in the number o f variables included in the 

final statistical model.

4.2 Binary choice models

4.2,1 A generalised framework

A binary choice model views the outcome of a discrete incident (such as the occurrence of a 

large amount of scale) as a reflection of an underlying regression. The cost associated with 

any additional processing or downgrading of a heavily scaled coil (defined above as 200+ 

observations of scale) is modelled using an unobserved variable yj* such that



V

y\ =  A) P j X y  +  £ =  x p  +  £i
7 = 1

Eq. (4.2a)

tfi
where xy is the i measurement on process variable j associated with the Hot Mill and the pj 

are the parameters that are to be estimated from the data set. P is a vector containing the p+1 

parameters o f this model and x is the data matrix with the columns of this matrix containing 

each o f the process variables (including an initial column of l ’s) and each row contains the i* 

measurement on these variables. e\ is assumed to follow some standardised distribution with 

known variance - to be discussed further below. The cost o f having large amounts o f scale is 

not directly observed, just whether the coil is heavily scaled or not. Therefore observations at 

the Hot Mill take the form

yj = l if  y ; > 0  Eq. (4.2b)

y r O  if  y f < 0

Provided that a constant (po) is included in Eq. (4.2a) the assumption o f a zero threshold for 

yi* is an innocent one. The process variables are then taken to determine the probability o f y** 

> 0

Prob(yi* > 0 | x) =Prob(yi = 1 J x) = F(x, p) Eq. (4.2c)

Prob(yj* < 0 | x) =Prob(yj = 0 | x) = 1 - F(x, p)

where F(x, P) is a function, dependent on x and p, that determines the probability that yj = 1 

given the values in x, with the natural requirement that F(x, p) should tend to 1 as x;p tends to 

infinity (and F(x, p) tends to zero as x;p tends to minus infinity). There are many cumulative 

density functions that fit these criteria, but most applications of this type o f model are 

confined to the use of the normal distribution (giving rise to the Probit model - see Maddala 

(1991) for a good introduction to this model) and the logistic distribution (giving rise to the 

Logit model - see Maddala (1991) for a god introduction to Logit model).



The following model can be seen as a generalisation of these two binary choice models that 

enables discrimination between these and other functions through use of standard likelihood 

ratio tests. From Eq. (4.2a-c) it follows that

f V p \

Prob(yi =  1) =  Pt =  Prob< S i > -
<

Po T ^  ' Pj%ij 
j =1

II 1 ■*3
' 

I- Po "F ^  ' Pj%ij 
j=1 J

Eq. (4.3a)

Eq. (4.3a) makes it clear that F is the cumulative distribution function for e. One very general 

specification can be derived from the generalised F distribution. Prentice (1975) has 

suggested a non-degenerate and standardised version of this distribution whereby the 

probability density function is given by

(m1/m 2)mi exp(m ,w )
{T(m, )T(m2 )}/r(m, + m 2) (i + {ffl| / m i  J

where

/v \  IXlJIi / F CAU 1111, W I

f(w) = J ,   r / , w m>) Eq. (4.3b)

W i  =  —

r

Po +  ^ t Pj- ij
j =i

Eq. (4.3c)

and where f() is the derivative of F() with respect to w and T() is the gamma function. In Eq. 

(4.3a-c), the parameters mi and m2 determine the cumulative distribution function for Wj and 

thus 8j. That is, mj and m2 determine the form of the binary choice model such as the Logit 

and Probit model. Unfortunately, there is no closed form expression for F() within this setting 

except for some special cases. To take some well-known examples, first consider the case 

where mj = m2 = 1. Then

exp(Wi)
1 -  F[Wi] =

1 +  exp(wi)

Eq. (4.4a)
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which is the cumulative (standardised) logistic function giving rise to the Logit model which 

can also be expressed as the log odds model

Ln
Pi 1

p

l l  -  p j Po "b /  f Pj%ij 
j =1

Eq. (4.4b)

For finite mi and m2 but with mj = m2 this logistic function becomes the generalised logistic. 

Then when mi = 1 and m2 = 0

1 -  F(wi) =  1 -  exp[—exp(wi)]

Eq. (4.5a)

which is the cumulative (standardised) extreme value function giving rise to the proportional 

hazards model which can also be expressed as

Ln[-L n(  1 -  P*)] =  -
J =  l

Eq. (4.5b)

Other special cases include the probit model when mi = 00 and m2 = 00 and the generalised 

gamma cumulative function when just m2 = 00 (see Lawless (2003) for a descriptions of this 

function).

Whilst there are no closed form expression for the integral o f Eq. (4.3b) when mi and m2 are 

not restricted to the special cases outlined above, values for this integral at a given value for 

Wj can be obtained numerically. If mi and m 2 are both finite, values for this integral at a given 

value for Wj are found by calculating areas under the Beta distribution with mi and m2 

degrees o f freedom. More precisely,



Pi =  1 -  F
t'

Po +  ^  Pj- ij
;= i

Eq. (4.6a)

where B(sj,m 1,1112) is the area under the Beta distribution with mi and m2 degrees of freedom 

to the left o f Sj, where

m 2

Eq. (4.6b)

For finite mi and m2 = 00, values for this integral at a given value for Wj are found by 

calculating areas under the Chi distribution with 2mj degrees o f freedom. More precisely,

r'

Po +  Pj- ij
J = 1

= x(2vit 2mi)

Eq. (4.6c)

where x(2vi,2mi) is the area under the Chi distribution with (2mi) degrees of freedom to the 

left of 2 v j ,  where

Vi =  m^exp
W i

Eq. (4.6d)

The integrals calculated using Eq. (4.6c, 4.6d) tend to those obtained from the standard 

normal distribution (and hence yields the Probit model) as mi tends to 00. For finite m2 and mi 

=  00, the procedure is to replace Vj with -Vj and to replace mi with m2 in Eq. (4.6c, 4.6d). Most 

statistical packages have routines capable o f calculating such areas and as demonstrated by 

Prentice (1975) this is best achieved by reparametrising mi and m2 as

p = (m1+ m 2) 1 and q = (m] 1 + m 2l)(m11 + m 2')-1 , .  - I  x - l Eq. (4.6e)
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4.3 Parameter estimation

Since the y\ are realisations of a binomial process with probabilities given by Eq. (4.6a or 

4.6c) we can write the likelihood function as

y i = l  y t = 0

Eq. (4.7a)

so that the log likelihood is given by

n n

+ ^ ( l  -  y d lo g O -  -  Pi)
i = l  i = l

Eq. (4.7b)

where n is the sample size o f the data set and Pj is calculated from Eq. (4.6a or 4.6c) for given 

values o f mi and m2 . Given these values for mi and m2, the p parameters in Eq. (4.6a, 4.6c) 

are chosen so as to maximise the log likelihood in Eq. (4.7b).

4.4 Model identification

Taking a general to specific approach to model identification, all the process variables shown 

in table 5 are initially included in the model (either individually or as part of a principal 

component). Then a grid search is carried out at different values for mi and m2 using this 

general model. The log likelihood defined by Eq. (4.7b) at each (mi, m2) combination is 

stored and the largest of them recorded. Call this statistic log[L]max. Clearly the (mi, m2) 

value combination associated with this value determines the distribution most supported by 

the data. However, any (mi, m2) combination that produces

log[L] = Y  y p o g iP t )

Ar 2[ log(L)max log (L)r\

Eq. (4.8a)



with a value less than 3.84 is also supported by the data at the 5 % significance level. log[L]r
this the log likelihood associated with the r (mi, m2) combination. This follows from the fact 

that Ar, under the null hypothesis that the rth (mi, m2) combination is the true combination, is 

asymptotically Chi square distributed with 1 degree o f freedom.

Once the correct values for mi and m2 are determined in the way described above, a data 

based simplification o f the model then takes place. The model associated with log(L)max is 

called the unrestricted model. If the j th explanatory variable is then removed from this model, 

a restricted model is obtained with a log likelihood given by log(L)R. This is achieved by 

removing the Xj with the smallest student t statistic. The final simplified model is obtained by 

removing all those variables for which

Ar = ~2 \ log(L)max

Eq. (4.8b)

has a value in below of 3.14. Finally, the adequacy o f this parsimonious model can be 

assessed in one o f two ways. First the proportion of correct predictions can be calculated, 

where a prediction is considered correct if Eq. (4.6a or 4.6c) yields a value above 0.5 when yj 

= 1 or alternatively when Eq. (4.6a or 4.6c) yields a value equal to or below 0.5 when yj = 0. 

The count R defined in Eq. (4.8c) below then lies between 0 and 1 with better performing 

models having a value closer to 1.

Count =
2 number o f  correct predictions

total number o f  observations

Eq. (4.8c)

4.5 Results and evaluation

4.5,1 Principal component testing procedure

With the use o f principal component analysis the correlations existing between the process 

variables were investigated. The analysis was able to reduce both the number of process 

variables and remove the correlations among the process variables used in the model. This 

allowed the model to predict the scale count and from this to gain an understanding of how to



run the Hot Mill so as to minimise scale formation. The maximum correlation coefficient 

between all the chemistry variables was 0.47 and this was between Copper and Nickel. 

Further, most of the correlation coefficients were less than 0.1 in absolute value. These 

relatively low correlations mean that there is little benefit to be gained from forming the 

principal components of these chemistries. However, table 6 shows that all the temperature 

variables are highly correlated -  especially for example between the maximum and average 

Rougher Mill temperatures ( x b  and X 15) .  In general, it can be seen from table 6 that the most 

highly correlated relationships occurred between the maximum and average temperatures at 

the Rougher Mill and at the Crop Shear.

Table 6. Correlation matrix for the temperature process variables. A value of 1 

represents a perfect correlation and a value of 0 represents zero correlation. A negative 

value shows an interaction in the opposite direction.

X]3 Xl4 Xl5 Xl 6 Xl7 Xi8 Xl 9 X20 X21 X22

Xl 3 1

Xj4 0.04 1

Xl 5 0.92 0.13 1

Xi6 0.76 0.73 -0.01 1

Xl7 0.3 0.26 0.04 0.38 1

Xl 8 0.53 0.57 0.01 0.69 0.3 1

X] 9 0.46 0.42 -0.03 0.61 0.46 0.23 1

X20 0.16 0.12 0.03 0.18 0.12 0.13 0.16 1

X2 l 0.48 0.44 -0.04 0.63 0.51 0.26 0.7 0.25 1

X22 0.06 -0.03 0.02 0.02 0.06 -0.01 -0.01 0.08 0.02 1

Given these high levels o f dependency between the temperature process variables, principal 

components of these temperatures need to be constructed to remove these correlations.



Table 7 shows how much of the variability in all the temperature variables shown in table 5 

are accounted for by the principal components.
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Table 7. Principle component results for the temperature process variables.

Components Eigen values Variation, % Cumulative Variation, %

PC, 4.201 42.01 42.01

PC2 1.106 11.06 53.07

PC3 1.043 10.43 63.51

PC4 0.9741 9.74 73.25

PC5 0.8418 8.42 81.67

PC6 0.7769 7.77 89.44

PC7 0.4999 5.00 94.44

PC8 0.2805 2.81 97.24

PC9 0.2040 2.04 99.28

PC,0 0.0718 0.72 100.00

The first three principal components accounted (see table 7) for nearly 64 % o f the variability 

present in all ten temperature process variables, whilst the first four principal components 

accounted for nearly three quarters o f the variability present in all ten temperature process 

variables. Using Cattell’s rule (1952) of only needing to use those principal components 

having an Eigen value of around unity or more, the ten temperature process variables can be 

replaced by the first three or four principal components. These principal components had the 

form

PCi =  -0.0233(x13 -  1121.8) -  0.0016(x14 -  918.3) -  0.0251(x15 -  1099.4)

-  0.0223(x16 -  1099.9) -  0 .0045(x17 -  951.7) -  0.0179(*18 -  1069.6)

-  0.0493(x19 -  907.2) -  0 .0045(x20 -  829.9) -  0.0644(x21 ~  881.1)

-  0.0003(^:22 -  731.4)

Eq. (4.9a)

PC2 = 0.0156(x13 -  1121.8) +  0.043 1(jc14 -  918.3) +  0.0214(x15 -  1099.4)

+  0.0008(x16 -  1099.9) +  0.0008(x17 -  951.7) -  0.0007(x18 -  1069.6)

-  0.0384(x19 -  907.2) -  0.0116(x20 -  829.9) -  0.0622(x21 -  881.1)

-  0.0 185(x22 -  731.4)

Eq. (4.9b)



PC3 = —0.0037(x13 -  1121.8) + 0.0597(x14 -  918.3) + 0.0005(x15 -  1099.4)

-  0.0027(x16 -  1099.9) + 0.0022(x17 -  951.7) + 0.0003(*18 -  1069.6)

-  0.0149(x19 -  907.2) + 0.0116feo “  829.9) -  0.0007(*2i -  881.1)

+  0.0235(>22 -  731.4)

Eq. (4.9c)

PC4 =  0.0043Ois ~  H21.8) + 0.0085O14 -  918.3) + 0.0080O15 -  1099.4)

+ 0.0040O16 -  1099.9) -  0.0054O17 -  951.7) + 0.0078O18 -  1069.6)

-  0.0047O19 -  907.2) -  0.0249O20 -  829.9) -  0.00 86 O 2i “  881.1)

+ 0.0233O22 -  731.4)

Eq. (4.9d)

The loading coefficients in front of each variable show how heavily weighted each variable is 

within each principle component. If the loading coefficients are similar , then instead of 

creating principle components a simpler alternative would be to take their sums (if the 

loadings are positive) or differences (if the loadings are negative). Thus in the first principal 

component, the loadings in front of the maximum Rougher Mill (x,3), the average Rougher 

Mill (x,5) and the maximum Crop Shear (xi6) temperatures are very similar, suggesting that 

an appropriate dimensionality reduction would be to look at the differences between these 

three temperatures. The loadings in front o f the minimum Rougher Mill (x,4) and the average 

Crop Shear (x,8) temperatures are very similar, suggesting that an appropriate dimensionality 

reduction would be to look at the differences between these two temperatures. The loadings 

in front of the minimum Crop Shear (x,7) and the minimum Finishing Mill (x2o) temperatures 

are very similar, suggesting that an appropriate dimensionality reduction would be to look at 

the differences between these two temperatures. The loadings in front of the maximum (x,9) 

and average Finishing Mill (x2,) temperatures are also very similar, suggesting that an 

appropriate dimensionality reduction would be to look at the differences between these two 

temperatures.

4.5.2 Distribution analysis

The p parameters in Eq. (4.6a and 4.6c) were estimated by maximising the log likelihood in 

Eq. (4.7b) at given values for p and q (with p and q defined by Eq. (4.6e)). All the chemistry



variables in the table 5 were included in Eq. (4.6a and 4.6c), and all the temperature variables 

were replaced by the first three principal components specified in the previous section. Figure 

6 shows the maximised log likelihoods associated with different values for p and q. It can be 

seen from figure 6 that the largest maximised log likelihood occurs where p = 1 and q = 0.5. 

The area o f the graph below the dashed line in figure 6 shows which maximised log 

likelihoods are significantly different from this one at the 5 % significance level using the test 

statistic in Eq. (4.8a). It is clear from figure 6 that both the Logit and Probit models are 

therefore supported by the data and have log likelihoods very close to the largest log 

likelihood. Consequently, and to keep the computational aspects o f the work simpler, all 

further results shown below are based on the Logit model.

-558
Binary choice model most spported by the data

Probit model
-560

'O
§  -562 5 % significance level for values of p 

and q supported by the data Logit
model

b£ *564

a«

-568

-570
0.25 0.5

p (as defined in Eq. (4.6e))
0.75

Figure 6. The maximised log likelihood obtained at different values for p and q.

4.6 Logit model results

Using the data based simplification procedure described in Section 4.4 above, a simplified 

Logit model was derived and this model is summarised in table 8. Only a few chemistries 

were statistically significant at the 1 % significance level, with these being Phosphorous, 

Silicon, Copper, Nickel and Chromium. Further, only 2 o f the above derived principal
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components were statistically significant at this level. Further, of the n = 1577 observation of 

y, 1140 o f these were predicted correctly by the model. This is an overall correct prediction 

rate o f 73 %. However, the model was significantly better at predicting the Hot Mill 

conditions leading to no significant scale formation (i.e. yj = 0), as the model predicts when yj 

= 0, some 98 % o f the time.

Table 8. Logit model results.

Process Variable Coefficient Std.Error t-value

Constant -2.49 0.46 -5.38

Percentage o f Phosphorus (X 3 ) 228.28 25.13 9.08

Percentage o f Silicon (X 5) -88.87 22.25 -3.99

Percentage o f Copper (X 6 ) 72.66 13.33 5.45

Percentage o f Nickel (X 7 ) -184.66 28.79 -6.41

Percentage o f Chromium (xg) -64.12 19.74 -3.25

PC, -0.391 0.04 -10.3

PC2 -0.232 0.07 -3.32

From table 8 it can be observed that each principal component has a negative impact on the 

log odds ratio as does the amount of Silicon, Nickel and Chromium. Phosphorous and Copper 

on the other hand have a positive impact on this ratio. For an indication of which variables 

have the biggest effect on the probability o f scale forming at the Hot Mill it is better to 

convert the coefficient values in table 8 into quasi - elasticities. These elasticities, contained 

in table 9, show the percentage change in the probability of scale forming following a 

percentage change in each of the process variables. These elasticities are calculated around 

the mean values -  shown in table 5 for each process variable as the elasticity will vary with 

the magnitude o f each process variable.
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Table 9. Quasi-elasticities.

Process Variable Quasi -  Elasticity

Percentage of Phosphorus (X 3 ) 0.62

Percentage of Silicon (X 5) -0.09

Percentage of Copper (X 6 ) 0.24

Percentage of Nickel (X 7 ) -0.39

Percentage o f Chromium (xg) -0.22

PC, -0.08

PC2 -0.05

From table 8 it can be seen that when the Phosphorous content is at 0.014 % wt (i.e. at its 

mean value shown in table 5) a further 1 % increase (0.00014 % wt) in the Phosphorous 

content will increase the probability o f scale formation by just over 0.6 percentage points. It 

can also be observed from table 9 that when the Nickel content is at 0.01 % weight (i.e. at its 

mean value shown in table 5) a further 1 % increase in the Nickel content will decrease the 

probability o f scale formation by just under 0.4 percentage points. Given the size of the other 

elasticities in table 9, these are therefore the most important chemistries for controlling scale 

formation at the Hot Mill, in that changes in these two chemistries will bring forth the biggest 

change in the probability of scale forming when the temperature variables are at their mean 

values shown in table 5.

As for the temperature variables, it can be seen from table 9 that when the first principal 

component is at its mean value a further 1 % increase in this component will decrease the 

probability o f scale formation by just under 0.1 percentage points. The temperatures in the 

first principle component with negative loadings (see Eq. (4.9a) above for PC,), have a 

positive impact of the probability o f scale forming. This relationship is looked at in more 

detail below. Prior to this it is important to look at some probability plots as the above 

elasticities only apply at the mean values for each process variable. To have a full 

understanding, the complete range o f values must be looked at and this is shown in the 

probability plots of figure 7.
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In figure 7 the probabilities shown on the vertical axis are calculated from Eq. (4.6a and 4.6c) 

by varying one of the process variables whilst holding the other process variables at their 

mean values. These probabilities can also be interpreted as the proportion of coils 

manufactured that have a significant number o f flaws - so preventing them being used for the 

high value added markets. Plots like those shown in figure 7 can therefore be used for 

optimising the process, i.e. finding how to operate the Hot Mill so that only a small 

proportion o f manufactured coils have scale counts that prevent them from being used in high 

end applications. For example, to keep the percentage of defective coils below 10 %, figure 

7a reveals the Phosphorous content must be below 0.011 % wt, when running the Hot Mill at 

the mean values for all the other process variables (see table 5 for these mean values). Again, 

to keep the percentage of defective coils below 10 %, figure 7d reveals the Nickel content 

must be higher than 0.013 % wt., when running the Hot Mill at the mean values for all the 

other process variables. As a final example, figure 7f shows that to keep the percentage of 

defective coils below 10 %, the first principal component must be below 1.9 when running 

the Hot Mill at the mean values for all the other process variables.

Using Eq. (4.9a) and PCi = 1.9, a particular Hot Mill temperature can be calculated assuming 

the process runs at the mean values for all the other temperature variables at the Hot Mill. 

These calculated temperatures are shown in figure 7h. It can be seen that to keep the 

percentage o f defective coils below 10 %, the maximum Rougher Mill temperature must be 

kept at 1040 °C or less. When looking at the average Rougher Mill temperature the 

temperature should be 1025 °C or less. The corresponding temperatures for the maximum, 

average and minimum Crop Shear temperatures are 1020 °C, 970 °C and 540 °C respectively. 

The corresponding temperatures for the maximum, average and minimum Finishing Mill 

temperatures are 870 °C, 852 °C and 410 °C respectively. No conditions could be found for 

the minimum Rougher Mill temperatures or the Run Out Table temperature when all other 

temperatures are at the mean values shown in table 5.

This type o f calculation can be done for any PCi value, and therefore for any frequency of 

significant scale formation to indicate what temperatures to run the Hot Mill at to achieve this 

required frequency o f scale formation. The final impression to be gleamed from figure 7 is 

that the variables to keep under strict control, so as to remove the possibility of very high 

proportions o f coils being produced with a significant number of defects (probabilities above



50 % for example), are Phosphorous, Copper and the various temperatures as summarised in 

the first principal component.

4.7 Logit Conclusions

The principal component analysis above showed that the temperatures at the Hot Mill were 

all highly correlated. However, nearly 75 % o f the variation in the ten Hot Mill temperatures 

could be accounted for by just four principal components that were completely uncorrelated 

with each other. Both the Logit and Probit models were supported by the collected data set 

and when a Logit model was estimated, only the first two principal components were 

statistically significant at the 1 % significance level, together with just five chemistries -  

Phosphorous, Silicon, Copper, Nickel and Chromium. The Logit model also had a correct 

prediction rate o f 73 %,

It appears from this analysis that the easiest way to reduce scale formation is to lower the 

temperature entering the Finishing Mill. It was observed that average Crop Shear 

temperatures greater than 1050 °C have a significantly higher percentage chance of forming 

scale at levels greater than a count of 200 on the bottom surface. Therefore, reducing the 

average temperature entering the Finishing Mill will reduce the amount o f scale formed on 

the surface of the coil.

The most practical way of achieving this is to reduce the amount o f variability o f the 

temperature. This reduction o f the standard deviation avoids the issue o f failure to achieve 

finishing temperature requirements for mechanical properties. With increased temperature 

control the average temperature could be reduced with no detrimental impact.
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Chapter 5. A Partial Least Squares Generalized Linear Regression Algorithm

The Partial Least Squares (PLS) regression method in its basic form applies for one single 

response variable y and is non-iterative. It is particularly useful when the Xj variables are 

closely correlated with each other. Marx (1996) proposed a generalization o f the PLS 

algorithm to generalized linear models (see McCullagh and Nelder (1989) for an excellent 

account of generalized linear models). This approach is very useful because the binary logit 

model can be given a generalised linear regression representation. Marx (1996) used the fact 

that, in the context of the exponential family, maximum likelihood estimates are obtained by 

an iterative weighted least squares procedure. Marx’s approach consisted o f replacing the 

iterative weighted least squares step by a sequence of PLS regressions.

5.1 The Generalised Linear Model

Suppose that a sample of i = 1 to n specimens have been scanned for scale formation on the 

ROT of the Hot Mill. Then let yj be the binary response that equals unity when significant 

scale (defined as a scale count for the Parsytec system in excess of 200) is detected on the 

bottom of the tested specimen and zero otherwise. Next let nt be the probability o f significant 

scale formation and also let xii,..,xPj be all the explanatory or process variables described in 

table 5. Finally, let g(7ij) be the link function. Then the generalized linear regression model 

has the following form:-

v

Eq. (5.1a)

where

Eq. (5.1b)
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and where there are p process variables. The model parameters, pj, can be estimated using the 

iterative weighted least squares procedure put forward by McCullagh and Nelder (1989). This 

procedure involves the creation of an adjusted dependent variable Zi with components

zt = m + ( y i -
'dr)i
.djii.

Eq. (5.2a)

If then, the following (nxn) diagonal matrix o f weights is calculated

W = diag
( d m ) 2
\d n j)

Eq. (5.2b)

then the following standard weighted least squares formula can be used to estimate the Pj

p = (.x Tw x y 1x Tw z
Eq. (5.2c)

where X is a (nxp) matrix of the process variables xi; ...., xp such that the first column o f X 

contains the n values for xj and the last column o f X contains the n values for xp. XT is the 

transpose o f X and Z is an (nxl) vector containing the n values for Zj as defined by Eq. (5.2a). 

P is a (pxl) vector containing the estimates for pi to Pj. This has to be an iterative solution 

where initial guesses for pi to pj are inserted into Eq. (5.1a-b) to enable values for z\ and W to 

be calculated from Eq. (5.2a-b). Eq. (5.2c) then gives revised or improved estimates for pi to 

Pj. These revised values are then used to recalculate values for z\ and W from which further 

revised estimates for pi to Pj are obtained. This iterative process continues until the changes 

in all the Pj values are very small.
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5.2 Partial Least Squares within a Generalised Linear Model

Within this setting, the following Partial Least Squares (PLS) generalized linear regression 

algorithm can be stated as follows. This algorithm follows closely that given by Bastien and 

Tenenhaus (2005). Let Xo be the matrix containing the n values for the standardized input 

variables xou,...., xop

Xji Xj
j  = l ,p  and i =  1, n

Eq. (5.3)

where xj is the sample average for the n values on variable Xj and Sj the corresponding sample 

standard deviation (the last two columns of table 5 show these two statistics for each process 

variable). Then, the first column of Xo contains the n values for xoi, and the last column o f Xo 

contains the n values for xop. Within this setting the PLS components can be derived as 

follows:

5.2.1 Determination of the first PLS component tn:

1. For each j = 1 to p, compute the regression coefficient pij o f xoj in the generalized 

linear regression model given by Eq. (5.1a-b) of yj on xojj using the iteratively weighted least 

squares procedure described above.

2. For each j = 1 to p, compute the standard error, seq, of the regression coefficient Py 

of xoj in the generalized linear regression model given by Eq. (5.1a-b) of y\ on xoji using the 

iteratively weighted least squares procedure described above. Then compute the student t 

statistic vjj = Pij/ seij.

3. Form the vector Pi = (P n ,...,P ip) , and a (pxp) diagonal matrix of weights \ \  = 

diag(vij) and the (pxl) vector V]pi.

4. Compute the vector ti = XoViPj. ti is a vector made up of the n values of tu and 

constitutes the first PLS component.

This PLS component is essentially a weighted average o f the p predictors of yj, namely a 

weighted average o f the PijjXqji series. A cruder but simpler version of this is to remove from 

pi those coefficients that are found to be statistically insignificant at the 1 % significance



level using the student t test, and o f course the corresponding process variable from Xo, when 

forming the vector ti. (The justification being that vij will be small if  the student t value for 

pij = 0 is less than the 1 % significance level).

5.2.2 Determination o f the second PLS component t2i:

1. Compute the residuals from the set o f linear regressions o f each column of Xo on ti 

and store these residuals in the matrix Xj. (For example, xij would be the first column in Xi 

and would contain the n residuals derived from the linear regression o f xon on the tu.)

2. For each j = 1 to p, compute the regression coefficient P2j o f xjj in the generalized 

linear regression model o f yi on tu and xijj using the iteratively weighted least squares 

procedure described above.

3. For each j = 1 to p, compute the standard error, se2j, o f the regression coefficient p2j 

o f xjj in the generalized linear regression model o f Eq. (5.1a-b) of yj on xyi using the 

iteratively weighted least squares procedure described above. Then compute the student t 

statistic V2j = p2j/ se2j.

4. Form the vector P2 = (P21,---,p2P)T , a (pxp) diagonal matrix of weights V2 = 

diag(v2j) and the (pxl) vector V2P2 .

5. Compute the vector t2 = X 1V2P2 . t2 is a vector made up of the n values o f t2i. It is 

essentially a weighted average of the p predictors o f yj given in step 1. Again a cruder but 

simpler version o f this is to simply delete from P2 those coefficients that are found to be 

statistically insignificant at the 1 % significance level using the standard student t test, and the 

corresponding transformed process variable from Xj, when forming the vector t2 .

5.2.3 Determination o f the other PLS components:

This procedure is iterated for the other PLS components thi- At each step the generalized 

linear regression of yj on components tij,..., thi is carried out. The procedure is stopped, and 

the component tm+ij, not included in the model if that component is not statistically significant 

at the 5 % significance level using the standard student t test. The final regression equation is 

obtained by expressing the generalized linear regression of yj on tn ,..., tmj and this can also be 

written as a function o f the original variables by making use o f the standardisation procedure 

given in Eq. (5.3) and the means and standard deviations given in table 5. In the case of



ordinary multiple regression, this algorithm gives the usual PLS regression when there is no 

missing data.

5.3 PLS Results and discussion

5.3.1 The PLS Components and the PLS Logit Model

Table 10 shows the estimated values for the pij weights o f the first PLS components 

associated with all the different alloying elements. (See table 5 for a description o f the 

shorthand used for each o f the process variables listed in table 10).

Table 10. Estimated values for the Pn weights for all alloying elements.
Process Logit slope Elasticity (%) Count R (%)

variables coefficient, pij

Xl -0.0298 [-0.59] -0.24 49.08 (54.26, 46.56)

X2 -0.0807 [-1.60] -0.87 50.35 (57.56, 46.84)

X3 0.6371 [11.15]# 1.43 65.57 (56.98, 69.75)

X4 0.1065 [2.11] 0.25 57.64 (46.32, 63.18)

X5 0.1713 [3.31]* 0.14 60.88 (35.47, 73.23)

X6 -0.0585 [-1.16] -0.08 47.69 (58.91,42.22)

X7 -0.2122 [-4.14]" -0.39 53.52 (45.54, 57.40)

Xg -0.0937 [-1.85] -0.21 50.86 (53.88, 49.39)

x 9 -0.1892 [-3.71]* -0.68 56.50 (54.84, 57.30)

XlO -0.2360 [-4.50]* -0.19 48.19(75.58, 34.87)

Xll -0.0507 [-1.00] -0.35 48.19(50.39, 47.13)

Xl2 -0.1935 [-3.80]* -0.7 54.85 (57.56, 53.53)

Student t value for testing the null hypothesis that Pij = 0 shown in parenthesis. 

# Coefficient is significantly different from zero at the 1 % significance level.

Elasticity measures the percentage change in the probability o f observing scale 

resulting from a one percentage point change in the value of process variable Xj. 

This elasticity is calculated using n = 0.5 and using the values for Xj at this 

probability. Count R shows the percentage number of correct predictions which 

is further broken down, in brackets, into the percentage number o f y\ = 1 and y\ 

= 0 correct predictions respectively.



Only the slope coefficients in front of the elements P, Si, Ni, Al, Sn and solAl (X3, xs, X7, x9) 

xio, X12) are statistically significant at the 1 % significance level. O f these elements, increases 

in the amount o f P, S and Si (X 3 s X4 5 X 5 ) lead to an increase in the probability of scale 

formation, whilst increases in the other elements had a negative impact on scale formation.

Further, o f these statistically significant elements only P (and possible Al and solAl) seems to
<■%

have predictive power for both yj = 0 and yi = 1 (as measured by Count R ) above that given 

by purely random predictions. The estimated elasticities are however quite small (especially 

when compared to the temperature variables in table 11 below), with for example a 1 % 

increase in Phosphorous content bringing forth a 1.43 % increase in the chances o f significant 

scale forming (when this probability is already at 0.5).

Table 11. Estimated values for the Pij weights for various temperatures.

Process

variables

Logit slope 

coefficient, pij

Elasticity

(%)
Count R2 (%)

Xl3 0.7274 [11.84]" 22.83 63.28 (72.67, 58.72)

X14 0.0299 [0.59] 1.18 55.49 (38.57, 63.72)

Xl5 0.8002 [12.80]* 27.18 64.24 (72.67, 60.14)

Xl6 0.7175 [11.74]* 19.84 64.55 (71.51,61.17)

Xl7 0.2140 [3.98]* 2.1 53.77 (68.99, 46.37)

X]g 0.7465 [10.76]* 19.19 64.23 (75.00, 59.00)

XJ9 0.5033 [8.85]* 31.78 61.00 (55.81,63.52)

X20 0.2205 [4.29]* 3.16 49.78 (71.51,39.21)

X21 0.5851 [11.44]* 44.85 65.38 (66.67, 64.75)

X22 -0.2130 [-3.88]* -3.1 54.60 (41.28,61.07)

Student t value for testing the null hypothesis that P ij  = 0 shown in parenthesis. 

# Coefficient is significantly different from zero at the 1 % significance level.

Elasticity measures the percentage change in the probability of observing scale 

resulting from a one percentage point change in the value of process variable Xj. 

This elasticity is calculated using n = 0.5 and using the values for Xj at this 

probability. Count R shows the percentage number of correct predictions which 

is further broken down, in brackets, to the percentage number of yj = 1 and yj = 

0 correct predictions respectively.



Table 11 shows the estimated values for the pij weights of the first PLS components 

associated with all the different temperatures. Only the minimum Rougher Mill temperature 

appears to be statistically insignificant at the 1 % significance level and all but the average 

Run Out Table temperature has the expected sign - with increases in temperature bringing 

forth an increase in the probability o f significant scale forming. The average Finishing Mill 

temperature appears to have the biggest effect, with a 1 % increase in this temperature 

bringing forth a 44.85 % increase in the chances of significant scale forming (when this 

probability is already at 0.5). In terms o f the Count R values, the average Rougher and 

Finishing Mill temperatures have the best predictive capabilities for both yj = 1 and yj = 0.

Using the algorithm described in Section 5.2 above and the values shown in table 10 and 

table 11, the first PLS component, written out in terms o f the standardised values for the 

process variables, can be computed as follows

tu = —0.0176xoli — 0.1291^O2i 4- 7.1037*031 + 0.2247*O4i + 0.5670*Osi “  0.0679*O6i

— 0.8785*o7i — 0.1734*o8i — 0.70 19*09i ~ l-062*0iof “  0.0507*On i

— 0.7353*oi2i + 8.6124*oi3i + 0.0176*0i4i + 10.2427*0isi + 8.4235*0i6i 

4- 0.8517*oi7i + 8.0323*oi8i 4- 4.4542*0i9i + 0.9459*O2oi + 6.69 3 5*02ii

— 0.6603*o22i

Eq. (5.4a)

The first PLS component, written out in terms of the process variables in their original units, 

can also be computed as follows

tu  = —3743.73 — 4.09*!i—5.71*2i + 2258.17*3j + 75.07*4i + 175.02*5; — 11.51*6i

— 293.87*7i — 43.21*8i “  149.65*9; -  575.44*10j — 55.94*11[

— 170.32*12j + 0.4819*13i0.0015*14i + 0.6329*15j + 0.4235*16i

4* 0.0175*i7j + 0.3862*18j + 0.6201*i9( + 0.0327*2oi 4* 1.1647*2ij

— 0 . 0 2 6 3 * 2 2 i

Eq. (5.4b)



Then when tu is used instead of all the process variables, the following PLS logit model is 

obtained using iterativly weighted least squares

rji =  In
Ui

Ll -  7T|.
0 .0 2 8 6 ^  [15.69] Count R2 =  70.32 %

Eq. (5.4c)

The student t value given in parenthesis shows that this PLS component is significantly 

different from zero at the 1 % significance level and so is an important predictor variable of 

significant scale formation. This PLS model predicts the formation of scale or lack o f scale 

with approximately 70 % accuracy, which given the very large variability in the data is a 

good outcome. Further, the Count R2 associated with yj = 1 suggests that the model can 

predict the processing conditions that lead to excessive scale with 80.43 % accuracy (but the 

Count R2 associated with yj = 0 is lower at 65.41 %).

Using the above algorithm, the next PLS component using the standardised process variables 

was identified as

t2i = —0.1729*1:li — 0.0207*12i + 6.29*13j + 0.2287*14i + 0.1464*15j — 0.1043*16;

-  0.4650*17j — 0.2017*18j — 0.4807*19i — 0.5822*11Oj -  0.0011*1:L1j

-  0.4740*112j — 3.1391*113i + 0.00001*114i — 0.7965*11Si -  5.1901*116i

-  0.3543*117i — 0.3668*118i -  0.8308*119j + 0.03 5 7*120i -  0.0562*121i

-  0.7789*122j

Eq. (5.5a)

or in terms o f the process variables in their original units this can be re-written as



t2i = —74.36 — 41.14*^-2.07*2* + 2458.89*3j + 91.61*4i + 80.62*5i — 20.03*6i

-  215.05*7^ -  59.07*8j — 132.79*^ -  431.94*10i -  12.51*ni

-  144.26*12i — 0.0781*13i + 0.0003*14i + 0.0789*15i — 0.1752*16i

-  0 .0037*17i + 0.0605*18j + 0.0099*19i + 0.0078*2oi + 0.2260*21j

-  0.03 63*22i

Eq. (5.5b)

The extended PLS logit model encompassing this extra component is then estimated by 

iterative weighted least squares to be

T]( = In
Ui

.1 — Ui.
= 0.0315U; +  0 .0886t2i [15.69] [11.44] Count R2 =  73.30 %

Eq. (5.5c)

The student t values, given in parenthesis, shows that both these PLS components are 

significantly different from zero at the 1 % significance level and so are an important 

predictor variables of scale formation. This PLS model predicts the formation o f scale or lack 

of scale with approximately 73 % accuracy and so the addition o f the second PLS provides an 

additional 3 % to overall predictive accuracy of the previous model given by Eq. (5.4c). 

Further, the Count R2 associated with yj = 1 suggests that the model can predict the 

processing conditions that lead to excessive scale formation with 84.69 % accuracy (but the 

Count R2 associated with yj = 0 is lower at 67.77 %).

Using the above algorithm, the third PLS components was identified as

M l ■■■■III 11fT |  1 1 Mi l  LI I L 1 r 'l' r ^  r * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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t3i = —0.5834*21i ~ 0.05 06*22i — 2.1281*23l- + 0.0101*24* + 0.3162*25i + 0.0005*26i

— 0.3368*27* “  1.0641*28i — 1.0751*29j — 0.1006*2i0* — 0.0129*2u*

— 1.0759*2i2i — 0.0041*213* -  0.0049*2:L4j +  0.0886*2i 5* +  0.1006*2i6*

— 0.0473*217* +  0.00001*218* — 0.3424*2i9* +  0.0761*22o* ”  0.0035*22i *

— 0.3305*222i

Eq. (5.6a)

with the extended PLS logit model

Tji =  In
TCi

Ll -  n t\
= 0 .0316 tu  +  0.0888 t2i +  0 .0321t3i [15.98] [11.45] [1.61] Count R2 

= 73.50 %

Eq. (5.6b)

The student t values given in parenthesis shows that the first two PLS components are 

significantly different from zero at the 1 % significance level, but the third component is only 

statistically significant at the 10 % significance level. Further, this PLS logit model only has 

an additional 0.2 % overall predictive accuracy compared to that given by Eq. (5.5c). Taken 

in conjunction, these two facts suggest that the PLS logit model with just two components is 

a valid parsimonious model, i.e. the model given by Eq. (5.5c).

5.4 Analysis and Interpretation

Figure 8 plots the scale indicator variable yj against the PLS component tu. Also shown are 

the predicted probabilities of scale formation given by the above parsimonious PLS logit 

model. These predictions are consistent with the spread o f y\ values shown on figure 8. When 

the second PLS component is zero, scale formation becomes more likely than not when the 

first principle component exceeds zero in value. At this value for tu, a change in t2 i has a big 

impact on the probability of scale formation.
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Figure 8. Predicted Probabilities of Scale as a Function of the PLS Components.

Figure 9 plots the first two PLS components against each other with the data points shaded or 

un-shaded depending upon whether the scale indicator variable is zero or unity. It is clear 

from figure 9 that samples with significant scale formation tend to correspond to those with 

higher tu values -  more specifically with positive tn values. Variations in the values for t2i are 

a far less indicative of whether scale has formed or not. These positive tu values can be traced 

back to the specific operating conditions. Clearly, many different conditions can be identified 

to achieve a required rate of scale formation, but figure 10 and table 12 give an indication of 

what can be achieved.
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Figure 9. Cross Plot of the PLS Components.

Figure 10 shows the elasticity’s associated with each process variable as calculated around 

the mean values for each process variables shown in table 12. These elasticity’s give the 

percentage change in the probability o f scale formation following a 1 % change in that 

process variable from its mean value. It can be seen from figure 10 that the most important 

process variable appears to be the average Finishing Mill temperature. When this temperature 

is increased by 1 % from its mean of 881 °C (i.e. from 881 °C to 890 °C), whilst keeping all 

the other process variables at their mean values shown in table 5, the chances of significant 

scale forming as a result o f this change, increases by 25 %, i.e. from 0.5 to 0.63. 

Subsequently, the most important variables appear to be the average Rougher Mill 

temperature with an elasticity o f approximately 15 %. In importance, this is closely followed 

by the average Crop Shear temperature and the maximum Finishing Mill temperature whose 

elasticity’s are both approximately 10 %. The only alloying element with an elasticity above 

2 % is Phosphorous. With an elasticity o f 2.04 %, when this element is increased by 1 % 

from its mean of 0.014 % (i.e. from 0.014 to 0.01414 %), whilst keeping all the other process 

variables at their mean values shown in table 5, the chances o f significant scale forming as a 

result of this change, increases by 2.04 %, i.e. from, 0.5 to 0.51. This is clearly a much 

smaller effect than that associated with the above mentioned temperature variables.
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Figure 10. Calculated Elasties for Each Process Variable.

Next, table 12 shows what the process variables with the largest elasticity’s should be set at 

so as to achieve a required low probability of scale formation when all the other process 

variables are set at their average values shown in table 5. The low probabilities looked at in 

table 12 are 0.3 down to 0.1. Looking for example at the Finishing Mill temperature (X 2 1 ) ,  to 

reduce the probability o f significant scale forming from 0.5 (when all process variables are 

set at the average values shown in table 5) to 0.1, this temperature must be set as low as 842 

°C (compared to the sample average value of 881 °C). The same low probability o f scale 

formation can be achieved by lowering the Phosphorous content to 0.0065 % (from the 

sample average o f 0.0141 %) whilst holding all the other process variables at the sample 

average values shown in table 5. The values calculated in table 12 are theoretical values 

calculated using the PLS model, and should be considered in conjunction with other 

considerations; such as achieving the required mechanical properties and to avoid situations 

such as ferritic rolling.



Table 12. Examples of using the PLS logit model for process control.

V ariable/Probability X3 (%) X13 (°C) Xl5 ( ° C ) X18(°C) X 19(°C ) X 2 l( ° C )

0.1 0.0065 855.8 1017.8 944.2 799.5 842.3

0.2 0.0093 953.9 1047.9 990.5 839.2 856.6

0.3 0.0112 1019.2 1067.9 1021.2 907.2 866.1

Sample averages 0.0141 1121.7 1099.4 1069.5 907.2 881

A final insight into the estimated PLS logit model can be obtained using cumulative 

frequency plots. This cumulative frequency plot is constructed by sorting the sample data set, 

from lowest to highest, by the variable o f interest and counting how many observations there 

are at or below various values for that variable o f interest. This frequency count can then be 

plotted alongside the frequency count implied by the probabilities predicted from Eq. (5.5c). 

Figure 11 shows the cumulative frequency plot for the average Roughing Mill temperature. It 

can be seen that the observed and predicted values show similar trends. The model correctly 

predicts when scale starts to become an issue (around 1080 °C) and follows the observed 

frequency count until approximately 1120 °C.
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Figure 11. Cumulative Frequency Plot for the Average Rougher Mill Exit Temperature.



Figure 12 shows the cumulative frequency plot for the average Crop Shear temperature. It 

can be seen that the observed and predicted values do not correspond to each other in 

comparison with the other temperature variables. The predicted results over predict when 

scale starts to become an issue (1070 °C instead o f approximately 1060 °C) and follows the 

observed line until about 1090 °C.
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Figure 12. Cumulative Frequency Plot for the Average Crop Shear Temperature.

5.5 PLS Conclusions

Using a non-linear PLS logit model, it was found that there exists only two linear PLS 

components that were important and statistically significant in determining scale formation in 

this data set obtained from the Hot Mill at Tata Steel Port Talbot. The estimated model was 

capable of correctly predicting when yj =1 (i.e. when significant scale formation had 

occurred) 85 % of the time. The good predictive capability was also confirmed by the 

cumulative frequency plots, where it was observed that the predictions from the model with 

respect to those temperatures with a high elasticity corresponded well with the observed 

values. This was especially true for the temperature at which scale is first observed to occur.



The chances of scale formation also appeared to increase with increasing values of the first 

PLS component. This trend was then translated into suggested best practice operating 

conditions. For example, if  the Finishing Mill temperature was set at 842 °C, with all other 

process variables set at the average values shown in table 5, the model predicted the chances 

o f significant scale forming can be kept as low as 10 %. The elasticities associated with the 

non linear PLS logit model also showed that the main determinants o f scale formation were 

the various temperatures. The elasticities derived from the model showed that the minimum 

temperatures have significantly less predictive power than the maximum and average 

temperatures at the various stages of operation within the Hot Mill. The most significant 

temperatures for scale formation were the average temperatures at the Rougher and Finishing 

Mills, as well as the average Crop Shear temperature. It was also found that the only 

chemistry element that had a substantial role to play in scale formation was the amount of 

Phosphorus present in the coil, which could be increasing the adhesion o f the scale to the coil 

substrate.
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Chapter 6. Process parameters influencing tertiary scale formation at a hot strip mill 

using a multinomial logit model

6.1 Introduction

An alternative to using the scale count is to classify scale count into groups. Whilst this also 

results in some loss of information, it can often lead to more interpretable models and give 

predictions in the form o f probabilities of scale forming under different operating conditions - 

which can be useful for process control due to large variability. At one extreme is the binary 

classification where an indicator variable replaces scale count with this variable equalling 

unity when scale count exceeds the chosen value and zero otherwise. This is a simple scale -  

no scale classification. This classification results in the largest amount of lost information 

relative to the count data itself but is appropriate if scale counts less than this value is 

unlikely to be a problem for further processing (and all the costs associated with that).

Whilst the above binary approach can identify conditions most likely to lead to counts below 

200 and therefore where no further processing is required, it cannot predict conditions leading 

to other amounts of scale forming. Where for example further processing is required but the 

cost o f this is not too excessive. As the cost of further processing tends to increase with an 

increasing scale count, finer and more detailed process control often requires a broader 

classification of scale count. For example, the scale count data could be categorised as low, 

medium and high. Note that as the scale classification is broadened this type of approach 

tends to that obtained using a Poisson distribution for count data. This paper uses a broader 

classification than the binary one which can be seen as a balanced approach between the 

extremes of a binary classification and no classification -  where the raw count data itself is 

used.

6.2 MLR data classification

Table 13 summarises the categories of scale count used for the dependent variable for the 

MLR model. Essentially, a coil is classified as having either a very low scale count, a low 

scale count, a moderate scale count or a high scale count. An indicator variable Yj is used to 

summarise the category into which each o f the individual manufactured coils falls into. Y* = 0 

when a coil has between 1 and 10 scale counts on its bottom surface, Yj = 1 when a coil has 

between 11 and 75 scale counts on its bottom surface, Yj = 2 when a coil has between 76 and



350 counts o f scale on its bottom surface and Yj = 3 when a coil has over 350 scale counts on 

its bottom surface (the subscript i denotes an individual coil). These boundaries were chosen 

because they resulted in the most balanced distribution of coils within each grouping -  with 

around 25 % o f coils making up each category.

Table 13. Classification of splits for the MLR model.

Indicator Variable, Yj = k Boundaries for scale count
Number in 

category

% of Dataset 

in category

k = 0; Very Low Scale 0 - 1 0 367 23.30

k = 1; Low Scale 11-75 462 29.30

k = 2; Medium Scale 76 - 350 369 23.40

k = 3; High Scale 3514- 379 24.00

6.3 Principle Component Analysis

For an explanation of PCA, see Section 4.1.

Once all p principle components have been derived two additional questions require 

answering. First, how many principal components are essential for representing all the 

process variables? Cattell (1952) has suggested that only those principal components having 

an Eigen value greater than 1 should be considered as essential and therefore retained in the 

analysis. Secondly, do all the process variables need to go into making up each principle 

component? Frequently, extraction communalities are used to answer this second question. 

An extraction communality measures the variance in the process variables (once 

standardised) that are accounted for by each principle component. As such, extraction 

communalities are equal to the squares of the loadings described above. A common rule of 

thumb is that the loadings should be 0.7 or higher to confirm that a process variable is well 

represented by a particular principal component. This paper will therefore use a cut off o f 0.6 

for the squared loadings and extracted communality values below this number are taken to 

indicate variables that do not fit well with the spectral decomposition and should not be 

included in the construction of the principal components.



6.4 MLR model

The multinomial model can be written as

P r o b ( Y i  =  k )  =
X L o  * XP (pOk  +  £ y =1 Pjkx i j )

Eq. (6.2)

For the data set used in this paper, K = 3 (i.e. 4 scale categories), there are n = 1577 coils that 

have undergone a scale count performed and there are p = 39 process variables. However, 

there is an indeterminacy in the model as it is written in Eq. (6.2). This indeterminacy takes 

the form o f the probabilities given by Eq. (6.2) being not unique because, with the 

probabilities having to sum to unity over the K categories at a given set o f process variable 

values, only K -l parameter vectors would be needed to determine the K probabilities 

associated with each scale category. A convenient normalisation that solves this problem is to 

set Pok = Pik = • ••• = Ppk = 0 when k = 0, i.e. for the very low scale category. Then the 

probabilities are

ProbCYi  =  k )  =  Pik
eXp{PQk + EjLi/JjfcXy)

fc = 0,1, 1

Eq. (6.3)

This multinomial model implies that K -1 log -  odds can be computed as

Eq. (6.4)

Within this framework the binomial logit model used in chapter 4 results if  K = 1.



6.5 Estimating a Multinominal Logit Model

From the point o f view of estimation, it is useful that the odds ratio Pjm/Pik is not dependent 

on the other scale categories. The log likelihood to be maximised when estimating the Pjm 

parameters can be derived by defining for each coil, dik — 1 if  coil (i) has a scale count 

placing it in the kth scale category and zero otherwise for the K possible scale categories. 

Then for each coil (i) one and only one of the djk’s is unity. Then the log likelihood is

n  K- 1InL = zz dijln{Prob(Yi = k)}
i=l k=0

Eq. (6.5)

The estimated values for the parameters are taken to be those that maximise Eq. (6.5) which 

can be easily achieved using a standard nonlinear optimisation algorithm such as SOLVER in 

Excel 2010.

6.6 MLR Results and Discussion

6.6.1 Principle component testing procedure

Using principal component analysis the correlations existing between all the process 

variables was investigated. The analysis was performed to reduce both the number of process 

variables and to remove the correlations among the process variables used in the model to 

predict scale count. With the intention o f gaining an understanding o f how to run the Hot Mill 

so as to minimise scale formation. The temperature variables in table 5 were highly correlated 

with each other and so it was decided to restrict the principal component analysis to these 

variables. For example, the correlation coefficient between the average and maximum 

Rougher Mill temperatures was 0.92.

It was decided to use different variables in the construction o f this PC, compared to the one 

for Chapter 4. This was undertaken to gain a greater understanding o f the relationship 

between the temperatures. The variables used in the construction of the PC are listed in table 

14.



Table 14. Variables used in the construction of the principle components.

Important Temperature Variables

X26 Furnace Aim Temperature Average Temperature, °C

X27 Furnace Centre/Surface Difference, °C

X28 Furnace Surface Temperature, °C

X29 Furnace Centre Temperature, °C

Xl3 Maximum RM Temperature, °C

Xl5 Average RM Temperature, °C

Xl4 Minimum RM Temperature, °C

Xl6 Maximum CS Temperature, °C

X 19 Maximum FM Temperature, °C

X21 Average FM Temperature, °C

An iterative procedure was adopted to identify the important principal components and the 

temperature process variables present within them. First, all the temperature variables were 

used and all principal components were extracted. If a variable had a squared loading below 

0.6 in any of the principal components having an Eigen value above 1, that process variable 

was removed from the analysis. Second, with the reduced number o f temperature variables, 

the principal component analysis was repeated and the same procedure as above used to 

eliminate further temperature variables. This process was repeated until there were no longer 

any squared factor loadings below 0.6 in value. Table 14 lists the ten important process 

variables identified by this iterative procedure and table 15 shows the Eigen values associated 

with these principal components. It can be seen from table 15 that the average and minimum 

Crop Shear temperatures, the minimum Finishing Mill temperature, the average ROT 

temperature and all the coiling temperatures appear to be unsuitable for inclusion in any of 

the principal components.



Table 15. Principal component results for the temperature process variables.

Components Eigen values Variation, % Cumulative Variation, %

PC, 3.977 39.771 39.771

PC2 2.165 21.649 61.42

PC3 1.283 12.826 74.247

PC4 1.058 10.583 84.829

PC5 0.807 8.074 92.903

PC6 0.289 2.889 95.792

PC7 0.227 2.265 98.057

PC8 0.098 0.979 99.036

PC9 0.069 0.693 99.73

PC,o 0.027 0.27 1 0 0

Further, table 15 reveals that the first four principal components accounted for nearly 84 % of 

the variability present in all ten temperature process variables. Using Cattell’s rule (Cattell 

(1952)) of only needing to use those principal components having an Eigen value of around 

unity or more, the ten temperature process variables can therefore be replaced by the first four 

principal components. These four principal components had the following form;

PC± =  0.0168 * ( * 26  -  4.78) +  0.0067 * (x 27 -  44.96) +  0.0153 * (x28 -  1227.13)

+  0.0065 * ( * 29 -  1182.48) +  0.0242 * ( * 13 -  1121.75) +  0.0259 * ( * 15

-  1099.43) +  0.0014 * ( * 14 -  918.34) +  0.0219 * ( * 16 -  1099.88)

+  0.0489 * ( * 19 -  907.16) +  0.0636 * (x21 -  881.05)

Eq. (6 .6 a)

PC2 =  -0 .0 3 6 1  * ( * 26  -  4.78) +  0.02 12 * (x 27 -  44.96) +  0.00 29 * ( * 28  -  12 2 7.13)

-  0.0366 * ( * 29 -  1182.48) +  0.0059 * ( * 13 -  1121.75) +  0.0026 * ( * 15

-  1099.43) +  0.0021 * ( * 14 -  918.34) +  0.0059 * ( * 16 -  1099.88)

+  0.0049 * ( * 19 -  907.16) -  0.0119 * (x21 -  881.05)

Eq. (6 .6 b)
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PC3 =  -0 .0 2  17 * ( * 26  -  4.78) -  0.0 176 * (x27 -  44.96) -  0.03 31 * (x28 -  12 27.13)

-  0.0069 * ( * 29 -  1182.48) +  0.0025 * ( * 13 -  1121.75) +  0.0029 * ( * 15

-  1099.4337) -  0.0091 * ( * 14 -  918.34) +  0.0081 * ( * 16 -  1099.88)

+  0.04807 * ( * 19 -  907.16) +  0.0602 * ( * 21 -  881.05)

Eq. (6 .6 c)

PC4 =  0.00 44 * ( * 26 -  4.78) +  0.00 58 * ( * 27 -  44.96) +  0.00 9 2 * ( * 28 -  12 2 7.13)

-  0.0008 * ( * 29 -  1182.48) -  0.0101 * ( * 13 -  1121.75) -  0.0184

* ( * 15 -  1099.44) -  0.0729 * ( * 14 -  918.34) -  7.63E -  006

* ( * 16 -  1099.88) +  0.0256 * ( * 19 -  907.16) +  0.0297 * ( * 21 -  881.05)

Eq. (6 .6 d)

6.6,2 Multinominal logistic model results

A simple general to specific procedure was next utilised to obtain the structure of a 

parsimonious Multinomial Logistic Model. First, all the variables in table 5 were included in 

the model, but with all the temperature variables shown in table 14 replaced by the four 

principal components shown in the previous sub section. Using all these process variables 

and principal components the log likelihood given by Eq. (6.5) was maximised using 

SOLVER in Excel. All process variables that were not significant at the 5 % significance 

level were then removed from the model. This significance o f a process variable was judged 

by calculating twice the ratio of the log likelihoods calculated with and without this process 

variable. Under the null that this process variable is unimportant, this statistic is Chi square 

distributed with 3 degrees o f freedom (as each variable enters the equation for predicting the 

log odds in the four different categories of scale). Using this reduced number of process 

variables, the log likelihood given by Eq. (6.5) was maximised again using Excel’s SOLVER. 

This iterative procedure was repeated until all the process variables in the Multinomial Logit 

Model were statistically significant at the 5 % significance level.



Table 16. The estimated values for the parameters in Eq. (6.4).

Scale category

Variable Low Scale; Yj= 1 Medium Scale; Yj = 2 3 High Scale; Yj = 3

Constant 8.98 [1.2]’ 43.02 [4.7] 30.89 [2.7]

X38 -119.76 [33.6] -191.43 [-5.0] -303.39 [-6.7]

X39 -0.0004 [-0.3]* -0.005 [-2.5] -0.009 [-4.7]

Xl -54.75 [-3.0] -42.79 [-2.0] -151.18 [-5.9]

X3 84.33 [2.8] 384.79 [10.1] 702.25 [15.4]

X6 27.52 [1.8] 50.09 [2.7] -8.80 [-0.4]*

X7 18.13 [0.6]* -72.52 [-2.0] -135.25 [-3.1]

X8 -48.69 [-2.4] -120.66 [-4.6] -162.81 [-4.9]

X9 568.61 [3.4] 532.48 [2.7] 375.19 [1.7]

X l2 -632.02 [-3.5] -680.09 [-3.2] -572.31 [-2.3]

X31 -0.229 [-1.3]* -0.888 [-4.2] -1.13 [-4.5]

X ,8 0.016 [3.1] 0.011 [1.8] 0.037 [4.6]

X22 -0.023 [-3.2] -0.054 [-7.3] -0.055 [-7.2]

PC, 0.116 [2.2] 0.625 [9.0] 1.03 [11.9]

PC2 0.276 [5.0] 0.401 [6.2] 0.303 [4.1]

PC3 -0.001 [0.1]* 0.204 [2.5] 0.321 [3.1]

Ln(L) = -1598. Base Ln (L) = -2179. Student t values in parenthesis. Statistically 

insignificant at the 1 0  % significance level.



Table 16 shows the estimates made for pjk parameters in the parsimonious version o f Eq. 

(6.4) as identified using the above mentioned iterative procedure. Recall that for model 

identification, normalisation with respect to the very low scale category was undertaken (i.e. 

the parameters o f the model for this category are set to zero). In table 16, all variables are 

statistically significant in the sense that they determine the probability of scale formation in at 

least one category of scale severity. For example, the addition of Nickel (X7) to the base steel 

does not affect the probability of low amounts of scale forming, but it does significantly 

determine the probability of medium and high amounts o f scale forming. Exactly the same 

can be stated for the operation o f the Interstand Spray System (X 31) in that the choice between 

automatic and manual operation does determine the probability o f medium to large amounts 

of scale forming -  but not the probability o f low amounts forming. On the other hand, the 

addition o f Copper (x6) is statistically significant in the determination o f the probability of 

low to medium amounts o f scale forming on the steel surface, but not large amounts.

Table 17. Table of observed and predicted values for scale count.

Predicted Category

Yj =  0 Yj = 1 Yj = 2 Yj = 3
Sum

Observed

% o f correct 

predictions

0II 182 136 19 30 367 50

T3
<D b

Yj = 1 1 2 2 242 71 27 462 52

'c<DCfl
too
<L>
BS

Yj = 2 28 103 139 99 369 38

O U Yj = 3 1 0 29 6 8 272 379 72

Sum Predicted 342 510 297 428 1577

Yj = 0 corresponds to a very low scale count, Yj = 1 corresponds to a low scale count, Yj 

= 2 corresponds medium scale count, Yj = 3 corresponds to a high scale count.

The base log likelihood, is the log likelihood associated with a model containing only a 

constant term. Thus the ratio of this to the log likelihood when the process variables in table 

16 are included provides a measure o f explanatory power. Using these criteria, the inclusion 

of these process variables improves the ability to predict various categories o f scale intensity 

by almost 30 %. Table 17 provides another way of visualising the explanatory power o f this 

model as demonstrated by giving a cross plot o f the models predictions against the actual 

severity of scale formation. Thus 379 of the 1577 coils had a high scale count and the model



correctly predicted 272 o f these coils to have a high scale count. (If the model gives a 

probability o f more than 0.5 for a high scale count, then that coil is predicted by the model to 

have high scale count formation). This is a correct prediction rate o f 72 %. The model has 

mediocre power in predicting low scale counts, and poor predictive power in relation to 

moderate amounts of scale formation. It thus appears that this type of statistical model works 

best at identifying the process conditions leading to large amounts o f scale forming compared 

to low amounts o f scale forming. When using this model, more success in controlling scale 

will be achieved by ensuring the Hot Mill is not run under those conditions most likely (as 

predicted by the model) to lead to high scale counts, compared to ensuring the Hot Mill is run 

under those conditions most likely to lead to low scale counts.

There are various ways to use this model to identify these optimal Hot Mill conditions. One is 

to use an optimisation algorithm to search for those Hot Mill conditions the model identifies 

as most likely to result in high scale counts (and then avoid running at these conditions). 

There are likely to be many such conditions that could then be tabulated for the Hot Mill 

operators to refer to. An alternative is to take a partial view, i.e. look at one process variable 

at a time whilst running the Hot Mill at the average (or other predetermined set o f values) 

values for all the other process variables. Using this approach there are two useful tools or 

statistics to refer to -  probability plots and elasticities.

Whilst the parameter values in table 16 are useful for identifying the statistically significant 

variables that are present in scale formation, they demostrate very little about how important 

each variable is for controlling the process -  because these parameters are related to the log 

odds ratio rather than the probabilities o f scale forming. Elasticities are superior in this 

respect because they show the percentage change in the probability of each category o f scale 

forming that results from a one per cent change in the process variables. In table 18 below, 

these elasticities are calculated at the average values for each process variable.
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Table 18. Elasticities for each of the statistically significant process variables.

Process Variable Elasticity (% change)

Scale Categories 

Yj = 0 Yj = 1 Yj = 2 Yj = 3

Transfer Gauge (x 3 g ) 1.06 0.36 -0.62 -0.81

Coil Width ( x 39) 0.45 0.80 -0.52 -0.75

% Carbon ( x i ) 0 . 6 6 -0.06* 0 .2 2 * -0.83

% Phosphorous (X 3) -0.62 -0.82 0 . 6 6 0.79

% Copper (X 6) -0.08 0 .0 1 * 0.13 -0.07

% Nickel (X 7 ) 0.07 0 .2 1 -0.14 -0.14

% Chromium ( x g ) 0.25 0.19 -0.25 -0.19

% Aluminium (X 9 ) -2 . 6 6 1.75 1.13* -0 .2 2 '

% Solute Aluminium (X 1 2 ) 3.01 -1.26 -1.58* -0.18

Interstand Spray System (X 31) -0.06 -0.07 0.08 0.05

Average CS Temperature ( x j g ) -2.70 0.73* -1.07* 3.04

Average ROT Temperature (X 2 2 ) 4.38 2.75 -5.11 -2 .0 1

Yj = 0  corresponds to a very low scale count, Yj = 1 corresponds to a low scale 

count, Yj = 2 corresponds medium scale count, Yj = 3 corresponds to a high 

scale count. * Statistically insignificant at the 10 % significance level.

Ignoring the temperature variables in the three principal components for a moment, it can be 

observed that irrespective o f the scale category, the largest elasticities are associated with the 

Aluminium content of the slab and various Hot Mill temperatures. Thus it can be seen that 

the average Crop Shear (xig) and the average ROT (X22) temperatures have the highest impact 

on the probability of observing high scale counts on the finished coil. For example, a 1 % 

increase in the average Crop Shear temperature (xig) will bring forth a 3.04 % increase in the 

probability of high scale counts occurring on the finished coil when the Hot Mill runs at the 

average values for all the other process variables. Then at the other end o f the scale 

classification, it can be seen that the % Aluminium Solute (X12) and the average ROT 

temperature (X 2 2 )  have the biggest impact on the probability o f observing very low scale 

counts on the finished coil. For example, a 1 % increase in the average ROT temperature (X22) 

will bring forth a 4.38 % increase in the probability o f very low scale counts occurring on the 

finished coil when the Hot Mill runs at the average values for all the other process variables.



When looking across the scale categories, the elasticities associated with each variable 

change sign as you move from the lower scale count categories to the higher ones For 

example, a 1 % increase in the % Phosphorous added to the base steel will bring forth a 0.62 

% decrease in the probability of very low scale counts being observed on the finished coil, 

but a 0.79 % increase in the probability o f high scale counts being observed when the Hot 

Mill runs at the average values for all the other process variables. Elasticities can also be 

calculated using values other than the average for the other process variables.

In table 18 the elasticities for the principal components are not shown becausi by 

construction they will equal zero. This is because the mean values for each component a*e by 

construction zero. This does not imply that the process variables in each o f the compoients 

are unimportant, but that under the special conditions where these variables are such thzt the 

components are zero, their influence is minimal. Under all other conditions the temperature 

variables in each component are significant variables as observed from the probability plots 

in figure 13.
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Figure 13. Probability of scale formation with variations in some of the process 

variables.
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Figure 13 shows the effect of changing each process variable on the probability o f observing 

the various categories of scale whilst holding all the other variables at their mean values. The 

three principal components of the temperature variables are shown, together with some of the 

other process variables that have high elasticities.

To illustrate how to use such graphs for control purposes take the amount of aluminium 

added to the slab. At low levels o f Aluminium (0.024 % or less) it is virtually certain that the 

processed coil will have a very low scale count when operating the Hot Mill at the average 

values for all other variables shown in table 5. Contrastingly, when the incoming slab to the 

Hot Mill has 0.04 % Aluminium and the Hot Mill operates at average values for the other 

variables there is limited chance o f the processed slab having a very low scale count. Under 

these conditions around 55 % of processed coils will have low scale counts and a further 50 

% medium scale counts. The other chemistries shown in figure 13 can be interpreted in 

similar ways. Interestingly the effect o f % Solute Aluminium (X12) is similar to % Aluminium 

(X 9 )  but in the opposing direction.

Next consider the first principal component in figure 13. When this first principal component 

is below -3 in value (with all other process variables set at their average values), around 90 % 

of processed coils will have very low or low scale counts. Consequently, a small increase in 

this principle components value above -3 will result in a dramatic change, for example over 

75 % of coils being medium or high in scale count when this principal component value is 2. 

Such probability plots can also be calculated using values other than the average for the other 

process variables.

These principal component values can also be converted into actual temperature values at 

various points in the Hot Mill. As an example take the 90 % or more o f coils being low or 

very low in scale as being an acceptable outcome for the Hot Mill output. This corresponds to 

PCj = -3 or less as shown above. Using Eq. (6 .6 ) and PC] = -3, a particular Hot Mill 

temperature can be calculated assuming the process runs at the mean values for all the other 

temperature variables at the Hot Mill. These calculated temperatures are shown in table 19. It 

was not possible to achieve a PCi value o f -3 or less by manipulating process variables X26, 

X27 and X]4, when running the mill at average values for all the other variables shown in table 

5. The centre o f the Reheat Furnace should be set at 875 °C. When observing at the average



Rougher Mill temperature the temperature should be 1020 °C or less. The corresponding 

temperature for the maximum Crop Shear temperatures is 1010 °C or less. The corresponding 

temperature for the maximum Finishing Mill temperatures is 865 °C or less. Finally, for the 

average Finishing Mill temperature the temperature is 850 °C or less. This type o f calculation 

can be done for any PCi value, and therefore for any frequency o f significant scale formation 

to determine what temperatures to run the Hot Mill at to achieve this required frequency. It 

should be noted that the values in table 19 are unlikely to be used because the material would 

struggle to be effectively processed at these temperatures or achieve the required mechanical 

properties.

Table 19. Maximum temperature settings to achieve a 10 % or less chance of very low 

scale forming.

X28 X29 X13 X15 X]6 X19 X21

Temperature, °C 1095 875 1040 1020 1010 865 850

6.7 MLR Conclusions

The principal component analysis above indicated that the recorded temperatures at the Hot 

Mill were highly correlated. However, nearly 85 % of the variation in the ten Hot Mill 

temperatures could be accounted for by just four principal components that were completely 

uncorrelated with each other.

The above analysis showed that to be able to successfully predict scale formation many 

variables need to be taken into account including chemistry (most notably the addition of 

Phosphorous and Aluminium), temperature (that at the Run Out Table and those temperature 

constituting each principal component), and the descaler sprays. The Multinomial Logistical 

Regression model also had an overall correct prediction rate of 50 %. However, a correct 

prediction rate o f 72 % was obtained for the high scale category. This large difference in 

prediction shows that there is a large inherent variability within different sections o f the 

dataset, which implies that some scale count ranges have a significant influence from 

variables not being utilised within this dataset.



The main aim for estimating this multinomial model was not just to find the most important 

determinants of scale formation as the above identified variables are broadly consistent with 

what is already known. The main aim was to provide quantitative information on how to 

control the Hot Mill, i.e. where to set the process variables so as to minimise the number of 

coils produced with significant scale present on their surfaces. The model suggested that this 

can be done by choosing either the right chemistry for the incoming steel or through setting 

the correct temperatures at the Hot Mill. It was found, for example, that to keep the rate of 

coils containing medium or high scale counts below 10 %, the average Rougher Mill 

temperature should be kept at 1020 °C or more, when running the Hot Mill at the average 

values (shown in table 5) for all the other process variables. For chemistry it was found for 

example, that to keep the rate o f coils containing medium or high scale counts below 1 0  %, 

the Aluminium content must be below 0.024 % wt. when running the Hot Mill at the mem 

values for all the other process variables.

It should be noted that the model could also be used to identify the optimum temperatures to 

minimise scale formation if the chemistry was required to be changed.
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Chapter 7. Development of a multi-layer ANFIS model for the prediction of tertiary 

scale formation

The Adaptive Neuro fuzzy inference system (ANFIS) model integrates neural network and 

fuzzy logic principles and uses them within a single framework. The model developed within 

this body o f work is constructed in 3 layers. The aim is then to use the knowledge gained 

from this technique to better understand scale formation and how it can be reduced at the 

point o f manufacture. Only those variables identified as being significant (see table 20) in the 

previous 3 chapters are considered for inclusion in this ANFIS model.

Table 20. Process Variables and their Sample Means and Standard Deviations.

Process Variable xj Mean Standard Deviation

% Phosphorus X3 0.014 0.0031

Maximum RM Exit Temperature, °C X l3 1 1 2 1 . 8 17.87

Average RM Exit Temperature, °C X ]5 1099.4 16.18

Maximum CS Temperature, °C X i6 1099.9 19.89

Average CS Temperature, °C X]8 1069.6 2 0 . 8

Maximum FM Exit Temperature, °C X i9 907.16 7.18

Average FM Exit Temperature, °C X21 881.05 5.75

Scale Count Bottom Surface Y 250.1 402.6

RM = Rougher Mill, CS = Crop Shear, FM 

Table.

= Finishing Mill and ROT = Run Out

7.1 ANFIS model

The basic philosophy o f the ANFIS model is to split the data up into subsets and then to fit a 

standard second order response surface model to the data in each subset. However, where the 

splits in the data occur are fuzzyfied. Figure 16 describes the structure for a simplified ANFIS 

model where the experimental data is split up into four sub sections.
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Figure 14. A t> pical binar> regression tree with two inputs (xi and X2) and one output y.

The decision tree partitions the input space into a number of non overlapping rectangular 

regions, each of which is assigned a label fj() to represent a predicted output value. In this 

illustration the tree identifies four simple if -  then rules. Note that each terminal node has a 

unique path that starts with the root node and ends with the terminal node; the path 

corresponds to a decision rule that is a conjunction of various tests or conditions. Typically, 

each fj() will be a linear function of X] and X2 and for each region there is a separate linear 

equation. The functional form for fj() does not have to be linear however. More generally, 

and as used in this paper, it can be a second order response surface model given by

2 2 2  2

XjXv +  (pj £  x f  
j=1 y = l i;=y' + l 7 = 1

Eq. (7.1)

f i x  1, x2) =  ft) +  Pj Xj + Xjv ^
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The problem with this approach is that the resulting modelled response surface is highly 

discontinuous in that it changes abruptly at the decision rules. This problem is overcome by 

fuzzyfying the decision rules. For example, the crisp decision rule associated with the left 

most branch of the binary tree in figure 14 is

If xi < a and X2 < b then y = fi()

It is established that fuzzy expert systems use membership functions to quantify possibilities 

(Jang et a l (1997)). Possibility is a fuzzy measure indicating the degree o f evidence or belief 

that a certain value xi belongs to a set. A membership function has a value between 0 and 1 

such that xi values further and further below a, have membership values closer and closer to 

one. A common functional form used for the membership function is the sigmoidal function

1

HxKa -  1 -  X + exp[-K(Xl -  a)]

Eq. (7.2a)

where k  is a parameter requiring estimation. The value for k  determines the steepness o f the 

membership function at a. So the further xi is below a, the greater will be the value for pxi < a, 

indicating a stronger belief that that value for xi belongs to the set xi < a. pxi < a varies over 

the range 0  to 1 , with 1 indicating the strongest possible belief.

Finally, the parameters o f the model are fine tuned using a particular type o f neural network. 

This network is called an ANFIS -  adaptive network -  based fuzzy interference system 

(Tsoukalas and Uhrig (1997)). There are various ANFIS architectures, but one using a first 

order Sugeno (1995) fuzzy model is the most common. The layers o f this ANFIS network are 

shown in figure 15 for the decision rules shown in figure 14.

Rule 1: If  xj < a and X2< b, then y = fi()

Rule 2: If xi < a and X2> b, then y = f2()

Rule 3: If xi > a and X2<c, then y = fj()

Rule 4: If xi > a and X2> c, then y = f*()



In the first layer o f the ANFIS network, each of the i values for xi and X2 are given 

membership quantities using the following sigmoidal functions

= ! - : --------- r — 7------ 77 with inverse (INV) n xXia =
1 + expj-K-, (jCj - a)\

M,2<b = 1 “ 7-------- 7— ,------— withinverse (INV) n n>h =
l + exp[-x*2 (jc, - 0 )]

1 + exp [-a:, (x. - a ) ]

1

l + exp[-A*2 (jc, ■-* )]

1

Eq. (7.2b)

Eq. (7.2c)

Mr?<r = 1---------------   with inverse (INV) u ^ >r -
1 + exp[-x -3 (x, -  c)\ 1 + exp[-/r3 (jCj -  c)]

Eq. (7.2d)

where Ki to K3 are parameters requiring estimation. In layer 2 weights are determined that 

represent the possibility that each pairing for the i values of X] and X2 belong to one of the 

four sets given by the decision rules above. These weights are given by

wi = (pxi<a)(px2<b)

Eq. (7.3a)

w 2 =  (px i<a)(px2>b)
Eq. (7.3b)

w3 = (pxi>a)(px2<c)

Eq. (7.3c)

w 4 =  (jj,xi>a)(px2>c)
Eq. (7.3d)

These are examples o f a T-norm operator for working out the possibility, for example, that xi 

is less than a AND X2 is less than b. In figure 15, n  stands for the use o f this T-Norm. In layer



3 each value for fj() is multiplied by its Wj value so that more emphasis is placed on the linear 

function corresponding to the rule most likely to describe the x\ and X2 pairing (the form for 

fj(0 is as shown in figure 14). Finally, in layer 4 these weighted functions are added up to 

give the prediction for y coming out o f the ANFIS network. Conjugate gradient methods are 

then used to optimise the values for Ki to K3 and all the parameters o f fi() to f4().

Layer 1: Memberships Layer 2 Layer 3: Rule

Figure 15. ANFIS architecture corresponding to the representation shown in 

Figure 14. Values for w given by Eq. (7.3).

The only remaining question is how to decide which variables to split by and how many 

variables to split. In this paper a simple binary procedure is used. The first o f the p process 

variables shown in table 20 is selected and the above ANFIS model fitted for just this one 

variable. The predictions from this ANFIS model with p = 1 are then compared to the 

observed values and the sum squared error is computed

Sum Square Error = 'Zi=i(Predictedi — Yt) A2 Eq. (7.4)



for all different values o f Ki. The value for K] is then taken to be that value producing the 

smallest sum squared error. This is repeated for all p variables and the variable chosen for the 

first split is the one producing the smallest Sum Squared Error. The variable chosen for the 

second split is found in the same way and any number of splits can be made provided each 

sub section o f the data has enough observations in it to estimate Eq. (7.1).

7.2 ANFIS Results and Discussion

Table 21 shows the sum square error of each of the stages described above. Var is a vector 

containing the variables used to split the data. Thus Vari contains the variable used to create 

the first split and Var2, contains the variable used to create the second split in the data and so 

on. Table 21 shows that the best predictor for Vari was the AvgRM. For, Var2, PerP is the 

best predictor o f the variables investigated. While for Vara AvgCS was added to the ANFIS 

model.

Table 21. Table showing the sum of the square errors for the different variables used.

Sum Square Error Sum Square Error Sum Square Error for

for Vari for Vari ,2 (AvgRM, Vari52,3 (AvgRM, PerP,

(AvgRM) PerP) AvgCS)

PerP 1363.95 935.99 N/A

MaxRM 1264.09 1174.43 825.16

AvgRM 1207.79 N/A N/A

MaxCS 1373.91 1150.69 811.82

AvgCS 1375.78 1072.16 758.16

MaxFM 1466.22 1103.87 809.35

AvgFM 1409.06 1139.55 826.95

The numbers in bold are the variables that have the lowest sum of squared error 

for that Var. The numbers in Italics have the highest sum of square error for the 

Var.

Consider first the ANFIS model with just the first variable identified in table 21. Figure 16 is 

a graph o f observed versus predicted scale count for a Vari (AvgRM) ANFIS model. The



values for a and k  in Eq. (7.2a) were 1.69583 and 1132.70 respectively and f(Vari) was 

estimated to be

f(Vari) = (3,97)+(-3.08)*AvgRM+( 1.31 )*AvgRM2 when Var, > a 

f(V ar,)=  (-0.23)+(0.17)*AvgRM+(0.01)*AvgRM2 when Var, < a

When a linear trend line is added to the data in figure 16, the equation for the trend line has a 

slope value o f near 1 and a very low intercept term. The R value is 0.2336 which means that

23 % of the observed values for scale count can be explained by this ANFIS model. The line

is close to a 45 degree line so there is very little systematic prediction error.

4000

3500

3000

2500 y =  1.004x- 1.0985 
R2 = 0.23362000

1500

1000

500 o o

500 1000 1500 2000 2500 3000 3500 4000
Predicted

Figure 16. Observed tertiary scale versus predicted tertiary scale for Vari (AvgRM).

Figure 17 shows the observed versus predicted results for the Vari;2 ANFIS model. It can be 

seen that in comparison to Vari that the slope of the trend line has improved (converged to 

one) by 0.0024 and the intercept has improved (converged to zero) by 0.2899. This combined
'7 • • •

with an improved R value of 0.4104, indicates that the prediction obtained by this model has 

less systematic errors in prediction and a higher predictive capability. This ANFIS models 

prediction now describes 41 % of the observed dataset’s results.
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Figure 17. Observed tertiary scale versus predicted tertiary scale for V an ,2 (AvgRM, 

PerP).

Figure 18 shows the observed versus predicted results for the Vari,2,3 ANFIS model (i.e. with 

all 3 variables identified in table 21 included). When compared to the Varj^ model its trend 

line equation has its slope value decreased by 0 .0 0 2 1  and the intercept has decreased by 

0.9902. However, this is not a significant change. By using the 3 best calculated predictors 

for the ANFIS model, the predictions explain 52 % of the observed dataset.
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Figure 18. Observed tertiary scale versus predicted tertiary scale for Vari,2,3 (AvgRM, 

PerP, AvgCS).

Table 22 illustrates the regression parameters for this last ANFIS model, with the most 

significant coefficients for each of the interactions highlighted in bold. Observations from 

table 22 indicate the value with the highest regression parameter is X2 (PerP) with 3 out o f 8  

values highlighted. This is followed by Xi (AvgRM) and the constant with 2 out 8  each, 

followed by X3 (AvgCS) with 1 out of 8 . This indicates that the variable that has the greatest 

influence on scale count within a sub region of the data is X2 (PerP), and the general trend is 

for variables to have greater significance than the interactions between the variables or the 

squared values o f the variables.



Table 22. Table showing the regression parameters for Vari,2 3 . Bold numbers represent 

the most significant parameters for that function.

Regression parameters

fl f2 f3 U f5 f6 f8

const. -216.27 67.83 -89.15 67.83 13.43 -4.47 14.74 -0.36

X, 168.70 -45.54 55.90 -45.54 10.24 -2.15 8.12 -0.19

x 2 334.64 -18.57 97.07 -18.57 -28.31 1.58 -1.38 0.18

X3 -229.92 -14.60 85.77 -14.60 9.68 0.45 -21.42 0.30

X2 1 -23.04 8.61 -13.55 8.60 0.38 -0.73 0.51 0.02

X22 -64.08 4.72 19.47 4.72 8.11 -0.30 0.10 0.02

X 23 69.61 -2.43 -22.29 -2.43 -5.56 0.29 7.89 0.01

X 12 -44.87 4.26 -17.87 4.26 -3.56 -0.63 -4.21 -0.15

X,3 -6.65 5.70 -2.39 5.70 2.61 0.51 -5.95 -0.03

X 2 3 -25.81 -2.31 2.12 -2.31 3.73 1.15 0.25 0.24

Table 23 shows the calculated k  and a values for Vari ,2,3 . The k  represents the steepness of 

the membership function, a low value will give a shallow slope while a higher value will give 

a steeper slope. A steeper slope will tend to yield an ANFIS model very similar to a CART 

model. The data shows that the k  value is lowest for AvgRM and highest for AvgCS. This 

demonstrates that the steepness of the membership function improves with every new 

variable added to the model.

The a value (from table 23) represents where the fuzzy split in the membership function will 

occur relative to the variable. The split for AvgRM is over two standard deviations away 

from the mean value, so is at the higher end o f the range. The a value for PerP is within half a 

standard deviation o f the mean, so is comparable to the average value of the dataset. For 

AvgCS the a value is greater than one standard deviation from the mean. These are the three 

most important determinants of scale count at the Hot Mill.

Table 23. Table showing the calculated k  and a values at Vari ,2 3 .

AvgRM PerP AvgCS

K 1.69583 3.2322981 4.3772184

a 1132.70 0.0155 1094.03



Table 24 illustrates coils at different scale counts with the predicted scale counts and the three 

variables (AvgRM, PerP, and AvgCS). The variables show an overall increase with 

increasing predicted values as one would expect. The difference in the observed and 

predicted count in the sampled coils varies from being off by 20 to 200 counts. In general the 

scale count prediction decreases in accuracy the higher the scale count becomes (excluding 

the highest values). This is likely to be due to the influence o f conditioning sprays in the 

Finishing Mill.

Table 24. Table showing selected coils at different scale counts

Observed Bottom 

Scale Count

Predicted Bottom Scale 

Count AvgRM PerP AvgCS

0 87.3 1094 0.014 1066

199 175.8 1109 0 . 0 1 2 1077

1003 712.4 1084 0 . 0 2 1072

3806 3924.2 1156 0.017 1093

7.3 ANFIS Conclusions

From the variables that were selected it can be concluded that scale formation is mostly 

governed by the temperature o f the steel as it enters the early stands o f the Finishing Mill 

(AvgRM & AvgCS). With 23 % of the dataset being predicted by AvgRM and 11 % 

(difference in R between Vari52 and Var 1,2,3) of the dataset being explained by AvgCS. This 

gives a combined value of 34 % o f the dataset explained by pre-Finishing Mill temperatures.

There is also an element o f chemistry that impacts upon the scale count. With PerP being the 

best predictor for Varis2 accounting for 18 % of the observed scale counts.

The ANFIS model gives good predicted scale counts at low and high scale. This is most 

likely a product o f the process, because if the temperature going through the Finishing Mill is 

low, then a low amount of scale will be generated. While if the coil is very hot coming into 

the Finishing Mill then a high volume of scale will be generated. However, for mid scale 

counts (approximately > 750) the effectiveness o f the conditioning sprays might have a
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significant influence. These sprays are situated on the entry into the Finishing Mill and will 

suppress scale formation. If these conditioning sprays are running less effectively than 

normal for a period of time, then this could explain why the predicted values usually 

underestimate the scale count. Also, if  the sprays do not come on/off at the correct time then 

the head/tail o f the coil will not be conditioned which will lead to increased scale on the 

missed section. The other reason for this weakness in the model could be having average 

temperature values across the coil.

Overall the 3 level ANFIS models prediction rate was 52 % of a high variability dataset (i.e. 

variation in scale count).

7.4 References

L. H. TSOUKALAS and R. E. UHRIG. “Fuzzy and Neural Approaches in Engineering” 

(John Wiley & Sons Inc, New York, Chapter 2, 1997).

J. S. R. JANG, C. T. SUN and E. MIZUTANI. “Neuro-Fuzzy and Soft Computing: A 

Computational Approach to Learning and Machine Intelligence” (Prentice Hall, Upper 

Saddle River, Chapter 12, 1997).

T. TAKAGI and M. SUGENO. “Fuzzy Identification of Systems and its Applications to 

Modelling and Control”, IEEE Transactions on Systems, Man and Cybernetics. 15 (1995) 

pp. 116-132.

muiW ni'ii ~ iiHiwaiw i rnr> rr> i  — n i i i i i h i  in an n m »p iin iiii w h i i nwi in i >mi m»i n m i n  r in nuni M Tir»Tnnanrw<w w  imwii M i y ir Miom wigtfn m irm iiifm  n m  iMru w rnmnnnr »>M» n 'm ynm im«ri«nirnnTi»-iM iiniiam»ii 

102 |



Chapter 8. General Discussion

This general discussion section will bring together the main conclusion obtained from the 

application of the statistical techniques employed within this research.

8.1 Binary vs. Multinomial vs. Continuous

The dependent variable has been described in a number of ways for the different data mining 

techniques. The three ways that have been described are as follows;

•  Binary

o Changes the continuous scale count to a binary classifier

• Multinomial

o Changes the continuous scale count to a multinomial classifier

• Continuous

o The dependent variable is the Parsytec scale count.

Each way of classifying the data has its own strengths and weaknesses. Each of these 

strengths and weaknesses need to be considered before the models can be compared to each 

other.

8.1.1 Binary

Models that use a binary split tend to have higher predictive capability. This is because it is 

easier to predict a binary split compared to a continuous dependent variable. The relevance of 

these results are dependent on the choice o f the split.

It is also important to consider the placement of the split as it needs to be relevant to the 

process that is being investigated. The problem with using the scale count is that there is no 

strict scale count that indicates scale problems downstream, but values above the selected 

value for the split are more likely to have downstream issues.

The main strength of this method is in classifying coils that have very low or very high scale 

counts. If the split is in the correct location then the binary split should give good results for 

low and high values of the scale count.



The main weakness o f this method is the coils with scale counts around the split are going to 

be harder to correctly predict. With the split being at 200, scale counts of 199 will be classed 

as 0 while values o f 201 will be classed as 1. In reality there is usually less difference 

between 199 and 201, than 199 and 0 or 201 and 401+. This can cause errors and incorrect 

predictions, which could lead to the wrong variables being selected.

Splitting the dataset into low quantity and high quantity scale has several advantages and 

disadvantages. The main purpose o f this investigation is to identify the process parameters 

related to scale formation and it could be argued that splitting the dataset in a binary way will 

achieve this better than other methods. On the other hand the split gives low prediction for 

values around the binary split.

8.1.2 Multinomial

Splitting the continuous dependent variable into sets has several advantages and 

disadvantages over other techniques. The main advantage is that there are multiple sets that 

the coil can be classed into so you can better understand the severity of the scale present.

Like the binary dependent variable, problems with prediction occur around the splits. 

However there are more splits present and they cover less range than in the binary split so 

they should have less overall error associated with them.

The problem comes with the scale count not representing an increase in adherence but an 

increase in quantity o f scale. This means that the different groups are not necessary 

representative o f increasing scale problem. However scale count is an indicator o f potential 

problems, so the different groups do represent increasing potential for scale problems to 

occur.

8.1.3 Continuous

Keeping the dependent variable as a continuous variable has several strengths and 

weaknesses when compared to other ways o f representing the dependent variable.



The main strength is that it directly represents the observed dependent variable, unlike other 

methods which simplify the data. This avoids the problem associated with splitting the 

dataset into various groups.

The main weakness from using a continuous dependent variable is that the scale count being 

predicted is not a measure o f adherence o f the scale but frequency. As there is limited data at 

high scale counts this could lead to the model incorrectly predicted significant variables 

based on anomalous results. Also the variability is greater in the raw scale count data.

8.2 Model Comparisons

All the different models used in this investigation show slightly different significant 

variables. This is due to differences in how the models work and how the dependent variable 

is expressed. However there are some variables that keep occurring through the investigation.

In the different analysis undertaken temperature proved to be significant. As there is a high 

correlation between the different temperature variables, as seen by the two PCA performed in 

Chapter 4 and Chapter 6 . It can also be observed from the PC results that there is a greater 

correlation between the pre-Finishing Mill temperatures than the post-Finishing Mill 

temperatures.

PCI from Chapter 6  (see figure 12f) is comparable to the PCI from Chapter 4 (see figure 6 f). 

When Chapter 4 ’s PCI has all its components at their mean values (zero on the horizontal 

axis) there is a 15 % chance o f the bottom scale count being greater than 200. While Chapter 

6 ’s PCI (at its zero value) shows a 13 % chance o f the bottom scale count being greater than 

350, a 35 % chance o f it being between 76 - 350, a 32 % chance of it being between 11 - 75, 

and a 20 % chance o f the scale count being between 0 - 1 0 .  These values are very similar to 

each other and both show that as the temperature is increased above the mean values there is 

a significant increase in the chance o f bottom scale being produced.

The temperature entering the Finishing Mill is the most significant variable for scale 

formation. This makes logical sense as tertiary scale is formed in the early stands o f the 

Finishing Mill (see 1.2.4).



The main chemistry component that seems to contribute to scale formation is Phosphorus. 

Other elements have limited significance in some of the models but are not in all o f them 

because the tinplate grade investigated has a tight chemistry specification. Phosphorus was 

found to be significant throughout the different analysis used, with values greater than 0.015 

causing greater amounts o f scale formation. Chapter 4 shows that at 0.015 % there is a 20 % 

chance that the coil will have a scale count greater than 2 0 0  on the bottom surface, which will 

increase to a 45 % chance at 0.020 % Phosphorus (see figure 6 a). A similar pattern is 

observed in Chapter 6  in figure 12a; at 0.015 % Phosphorus there is a 19 % chance of the 

bottom scale count being greater than 350, a 31 % chance o f it being between 76 - 350, a 35 

% chance of it being between 11 - 75, and a 15 % chance o f the scale count being between 0 - 

10. While at 0.020 % Phosphorus there is a 6 6  % chance o f the bottom scale count being 

greater than 350, a 28 % chance of it being between 76 - 350, a 4 % chance o f it being 

between 11 - 75, and a 2 % chance of the scale count being between 0 - 1 0 .  Chapter 7 shows 

that 18 % of the dataset is predicted by Phosphorus, and is the second strongest variable used 

in the ANFIS analysis. These models both show that at Phosphorus levels greater than 0.015 

% there is an increased chance of scale being a problem.

The Logit and PLS models have several similarities for comparison. The first is that they both 

use a binary dependent variable, which makes it easier for comparisons to be drawn. The PLS 

model has a greater prediction rate than the Logit model (85 % compared to 73 %), which 

means that the PLS model has a 12 % improved prediction rate on the dataset than the Logit 

model. Which could be interpreted that the PLS gives more reliable results than the Logit 

model. Both models show that temperature is a significant variable in scale formation. The 

PLS model predicts a 10 % scale rate if the average Finishing Mill is below 842 °C. The 

Finishing Mill temperature is dependent on the pre-Finishing Mill temperatures and the 

conditioning sprays present. This implies that if  the conditioning sprays are working and the 

pre-Finishing Mill temperature is limited then better scale results will be achieved.

Even though the MLR and ANFIS models are very different there are several similarities that 

need to be discussed. Both models show that some areas of the dataset are more difficult to 

predict than others. The MLR model had an overall prediction rate o f 50 % but the prediction 

rate for individual sets varies from 38 % to 72 %. The ANFIS model gave improved 

prediction at the extremes o f the dataset, but had decreased performance at predicting mid­



range values. This shows that there are scale counts that are difficult to predict with the 

process data that is available. Both o f these models show that the percentage o f Phosphorus 

and the temperature o f the strip is significant for scale formation.

8.3 Model Use

To be able to perform successful analysis a number o f stages need to be undertaken. The first 

stage is to identify the reason the analysis is being carried out, this will influence how the 

problem will be structured and aid in interpreting the results. The second stage is to 

understand what data is available and if  the data will allow the question to be answered. This 

should be carried out until the data collected is capable of answering the required question.

Stage 3 is the preparation o f data. This is done by removing anomalous values and presenting 

the data in a way that is suitable for whichever models have been selected. Stage 4 is 

commencing the initial modelling, which should allow for a greater understanding o f the 

data. This increased understanding will allow for improved modelling to be performed. This 

process will be repeated until usable results are achieved.

Stage 5 is to evaluate the results to understand if it is has met the requirements o f stage 1. If 

the results have not answered the original problem then, the analysis should return to stage 1 . 

If the analysis has answered the original question then the results should be deployed to 

obtain value from them.

8.4 Scale Form ation

The temperature is the most significant variable for scale formation, particuly the temperature 

entering the Finishing Mill. Due to data limitations it cannot be determined the exact location 

o f the scale formation but the data analysis and literature review confirm that the entry into 

the Finishing Mill is the critical location. This is highlighted in Chapter 6  and it can be 

observed that there is marked increase in scale formation when the average Roughing Mill 

temperature is greater than 1070 °C (see figure 10). With a similar increase in scale 

occurrence occuring when the average Crop Shear temperature increases above 1050 °C (see 

figure 1 0 ).



At lower temperatures little scale is generally formed. This confirms that scale formation is a 

temperature dependent reaction. While at high temperatures scale is generated in large 

amounts. Mid-way temperatures are influenced by other variables more than temperature, 

such as chemistry and descaling practice.

The chemistry present in the slab also has an influence on scale formation. The chemical 

element that is most significant for scale formation is Phosphorus. The literature states that 

Phosphorus becomes enriched at the metal/scale interface which suppresses the diffusion of 

Fe ions. This lack of Fe ions will not prevent the oxidation from arising, but will promote the 

formation o f Magnetite and Hematite over Wustite. This will cause scale to be slightly more 

adherent which can lead to higher counts present on the coil.



Chapter 9. General Conclusions

It can be concluded that temperature is the most significant variable for scale formation. With 

the temperature entering the Finishing Mill being the most significant region to control to be 

able to effectively manage scale formation. Low temperatures will result in low levels o f 

scale formation while high temperatures will result in high levels o f scale formation. Mid 

level temperatures are more difficult to predict because it seems that other factors are 

influencing scale formation more significantly than temperature. In particular Phosphorus 

seems to have a significant impact on scale formation especially at values greater than 0.015 

%.

Models should not be used in isolation, as every analysis method has advantages and 

disadvantages and they are often difficult to identify without several other methods to 

compare against.

After discussion with process specialists it was decided to implement monitors to pass the 

significant variables in a more visible way downstream of the Hot Mill. The plan is to 

continue to use the monitors to communicate between units in a productive way and to 

continue to evolve the monitors over time to manage changes in the system. The initial 

monitors are featured on table 25. The values and boundaries have been decided by 

comparing the results from this thesis with ongoing investigations into scale formation.

Each o f the significant variables selected will be classed as RED (major risk of scale), 

AMBER (risk o f scale), GREEN (low risk of scale). The class is selected depending on the 

value of the variable and the boundary conditions for the process condition. This simple 

method o f visualising the data was selected to improve communication and improve the flow 

of information. There will also be an overall colour designation for the coil. The colour 

selected will be the highest colour (ranked; RED, AMBER then GREEN) that the coil had.
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Chapter 10. Recommendations

There are several recommendations that can be implemented from this thesis. The first is that 

to limit scale formation the temperature needs to be kept low. Values greater than 1070 °C for 

the average Roughing Mill and above 1050 °C for the average Crop Shear temperature are 

considered high, with values greater than this increasing the chance of scale formation. As the 

temperature increases more scale suppression measures are required to limit scale formation, 

with high temperatures more likely to generate a greater amount o f scale even with fully 

functional scale suppression systems in place.

Chemistry is also a significant factor in scale formation, with Phosphorus being the most 

significant o f the chemistry variables. It is recommended that the chemistry specification for 

Phosphorus be limited to a maximum value of 0.015 % rather than 0.020 % to limit scale 

formation. Slabs with higher values should be treated with particular care when being 

processed through the Hot Mill to limit scale formation.

It is recommended that the monitor that has been deployed continue to be utilised and 

updated, to aid in the removal of scale as a significant defect and to improve communication 

between business units.


