Journal article 1089 views 194 downloads
Feasible set functions have small circuits
Computability, Volume: 8, Issue: 1, Pages: 67 - 98
Swansea University Author: Arnold Beckmann
-
PDF | Accepted Manuscript
Download (516.38KB)
DOI (Published version): 10.3233/COM-180096
Abstract
The Cobham Recursive Set Functions (CRSF) provide an analogue of polynomial time computation which applies to arbitrary sets. We give three new equivalent characterizations of CRSF. The first is algebraic, using subset-bounded recursion and a form of Mostowski collapse. The second is our main result...
Published in: | Computability |
---|---|
ISSN: | 22113568 22113576 |
Published: |
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa40896 |
first_indexed |
2018-06-30T19:28:28Z |
---|---|
last_indexed |
2020-06-29T18:54:51Z |
id |
cronfa40896 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-06-29T17:24:26.3784382</datestamp><bib-version>v2</bib-version><id>40896</id><entry>2018-06-30</entry><title>Feasible set functions have small circuits</title><swanseaauthors><author><sid>1439ebd690110a50a797b7ec78cca600</sid><ORCID>0000-0001-7958-5790</ORCID><firstname>Arnold</firstname><surname>Beckmann</surname><name>Arnold Beckmann</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-06-30</date><deptcode>MACS</deptcode><abstract>The Cobham Recursive Set Functions (CRSF) provide an analogue of polynomial time computation which applies to arbitrary sets. We give three new equivalent characterizations of CRSF. The first is algebraic, using subset-bounded recursion and a form of Mostowski collapse. The second is our main result: the CRSF functions are shown to be precisely the functions computed by a class of uniform, infinitary, Boolean circuits. The third is in terms of a simple extension of the rudimentary functions by transitive closure and subset-bounded recursion.</abstract><type>Journal Article</type><journal>Computability</journal><volume>8</volume><journalNumber>1</journalNumber><paginationStart>67</paginationStart><paginationEnd>98</paginationEnd><publisher/><issnPrint>22113568</issnPrint><issnElectronic>22113576</issnElectronic><keywords>computational complexity, primitive recursive set functions, circuit complexity, Cobham recursive set functions</keywords><publishedDay>19</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-19</publishedDate><doi>10.3233/COM-180096</doi><url>https://www.iospress.nl/journal/computability/</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-06-29T17:24:26.3784382</lastEdited><Created>2018-06-30T17:46:46.9980888</Created><authors><author><firstname>Arnold</firstname><surname>Beckmann</surname><orcid>0000-0001-7958-5790</orcid><order>1</order></author><author><firstname>Sam</firstname><surname>Buss</surname><order>2</order></author><author><firstname>Sy-David</firstname><surname>Friedman</surname><order>3</order></author><author><firstname>Moritz</firstname><surname>Müller</surname><order>4</order></author><author><firstname>Neil</firstname><surname>Thapen</surname><order>5</order></author></authors><documents><document><filename>0040896-20092018104920.pdf</filename><originalFilename>40896.pdf</originalFilename><uploaded>2018-09-20T10:49:20.4230000</uploaded><type>Output</type><contentLength>476233</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-09-19T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-06-29T17:24:26.3784382 v2 40896 2018-06-30 Feasible set functions have small circuits 1439ebd690110a50a797b7ec78cca600 0000-0001-7958-5790 Arnold Beckmann Arnold Beckmann true false 2018-06-30 MACS The Cobham Recursive Set Functions (CRSF) provide an analogue of polynomial time computation which applies to arbitrary sets. We give three new equivalent characterizations of CRSF. The first is algebraic, using subset-bounded recursion and a form of Mostowski collapse. The second is our main result: the CRSF functions are shown to be precisely the functions computed by a class of uniform, infinitary, Boolean circuits. The third is in terms of a simple extension of the rudimentary functions by transitive closure and subset-bounded recursion. Journal Article Computability 8 1 67 98 22113568 22113576 computational complexity, primitive recursive set functions, circuit complexity, Cobham recursive set functions 19 12 2018 2018-12-19 10.3233/COM-180096 https://www.iospress.nl/journal/computability/ COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2020-06-29T17:24:26.3784382 2018-06-30T17:46:46.9980888 Arnold Beckmann 0000-0001-7958-5790 1 Sam Buss 2 Sy-David Friedman 3 Moritz Müller 4 Neil Thapen 5 0040896-20092018104920.pdf 40896.pdf 2018-09-20T10:49:20.4230000 Output 476233 application/pdf Accepted Manuscript true 2018-09-19T00:00:00.0000000 true eng |
title |
Feasible set functions have small circuits |
spellingShingle |
Feasible set functions have small circuits Arnold Beckmann |
title_short |
Feasible set functions have small circuits |
title_full |
Feasible set functions have small circuits |
title_fullStr |
Feasible set functions have small circuits |
title_full_unstemmed |
Feasible set functions have small circuits |
title_sort |
Feasible set functions have small circuits |
author_id_str_mv |
1439ebd690110a50a797b7ec78cca600 |
author_id_fullname_str_mv |
1439ebd690110a50a797b7ec78cca600_***_Arnold Beckmann |
author |
Arnold Beckmann |
author2 |
Arnold Beckmann Sam Buss Sy-David Friedman Moritz Müller Neil Thapen |
format |
Journal article |
container_title |
Computability |
container_volume |
8 |
container_issue |
1 |
container_start_page |
67 |
publishDate |
2018 |
institution |
Swansea University |
issn |
22113568 22113576 |
doi_str_mv |
10.3233/COM-180096 |
url |
https://www.iospress.nl/journal/computability/ |
document_store_str |
1 |
active_str |
0 |
description |
The Cobham Recursive Set Functions (CRSF) provide an analogue of polynomial time computation which applies to arbitrary sets. We give three new equivalent characterizations of CRSF. The first is algebraic, using subset-bounded recursion and a form of Mostowski collapse. The second is our main result: the CRSF functions are shown to be precisely the functions computed by a class of uniform, infinitary, Boolean circuits. The third is in terms of a simple extension of the rudimentary functions by transitive closure and subset-bounded recursion. |
published_date |
2018-12-19T07:28:44Z |
_version_ |
1821389645014892544 |
score |
11.04748 |